
Reducing Deadline Misses and Power Consumption

in Real-Time Databases

Kyoung-Don Kang

Department of Computer Science

State University of New York at Binghamton

kang@binghamton.edu

Abstract—In data-intensive real-time embedded applications,
it is desirable to process data service requests in a timely manner
using fresh data, consuming less power. However, related work is
relatively scarce. In this paper, we present an effective approach
to decrease both the deadline miss ratio and power consumption
by merging similar real-time transactions, while systematically
adapting the data freshness. In a simulation study, our approach
considerably reduces deadline misses and power consumptions
compared to the state-of-the-art baselines, supporting the re-
quired data freshness.

I. INTRODUCTION

The demand for real-time data services in embedded sys-

tems is increasing. For example, small-footprint embedded

databases, e.g., [1], [2], [3], [4], are developed to support real-

time embedded applications, e.g., energy-efficient avionics,

medical devices, firefighting, real-time engine diagnosis, and

traffic management by roadside units. In such applications,

it is important to process real-time transactions and queries

(read-only transactions) in a timely manner using fresh (i.e.,

temporally consistent) data that represent the current real-

world status, while saving power.

However, achieving this objective is challenging. It is known

that optimal energy scheduling is intractable even in a single

processor with dynamic voltage and frequency scaling (DVFS)

and a low-power idle state [5]. The problem becomes harder

in RTDBs due to additional challenges. The timeliness of user

transactions, data freshness, and power saving requirements

may compete with each other. In RTDBs, usually dedicated

update transactions are used to periodically refresh temporal

data, e.g., sensor readings, to ensure the freshness. User

transactions analyze them to provide real-time data services.

If higher priority is given to user transactions, their timeliness

can be improved at the cost of the decreased data freshness or

vice versa. Simply consuming more computational resources

and power to support the timeliness and data freshness is not

desirable either. User transactions may arrive aperiodically

depending on the current real-world status, e.g., the traffic

or weather conditions. Also, transactions may get aborted

and restarted due to data/resource conflicts unknown a priori,

incurring deadline misses [6]. Thus, in this paper, we explore

effective heuristics to decrease both the deadline miss ratio

and power consumption in RTDBs.

In a database system, multiple queries often access common

data. For example, traffic data at busy intersections or severe

weather data are usually accessed more often. In fact, large

data access skews are prevalent [7]. For example, the well-

known 80/20 rule indicates that 20% of data are accessed for

80% of accesses. Thus, multiple queries can be merged into

a single query to avoid repeated data access and processing.

However, a direct application of this approach may result

in many deadline misses in RTDBs, since queries should be

delayed to get batched together. For instance, Lang et al. [8]

intentionally delay queries to combine them in non-RTDBs.

They decrease the energy consumption by up to 54% at the

cost of a 43% increase in the average response time.

To combine real-time queries without jeopardizing the time-

liness, our approach schedules the transaction with the highest

priority (e.g., the earliest deadline transaction) first, while

scanning the ready queue sorted in non-ascending priority

order backwards to merge similar user transactions together

in the background.1 Thus, our approach avoids duplicate data

access and processing as much as possible without disrupting

high priority transactions at or near the head of the queue.

Thus, it is compatible with any priority-driven scheduling

algorithm.

To further decrease the deadline miss ratio and power con-

sumption, we also extend the adaptive freshness management

scheme [9]. It gracefully adapts the data freshness within a

range specified by a database administrator (DBA) or an RTDB

application designer aware of the data needs in a specific

RTDB application, e.g., traffic control or fire detection, by

leveraging the (near) future data access pattern analyzed by our

real-time query aggregation scheme, incurring little additional

overhead.

Our real-time query aggregation and adaptive data freshness

management schemes cooperate with each other to mitigate

the additional RTDB challenges discussed before. First, our

query aggregation technique merges multiple aperiodic user

transactions that access common data when they arrive simul-

taneously upon, for example, a traffic incident or fire break-

out. By decreasing the user transaction workload, it meets

more user transaction deadlines, incurring less data/resource

conflicts among them. Second, our approach for adaptive

freshness management decreases the update load, which could

be substantial in RTDBs [10], [11], [9], to further decrease

1Although read operations of transactions as well as queries are merged
in our approach, our approach is called real-time query aggregation to be
consistent with the well accepted term, query aggregation [8].

deadline misses and power consumptions. Moreover, by reduc-

ing both user and update workloads, our approaches alleviate

data/resource contention between user and update transactions

too. In sum, they considerably relieve the tension among the

competing requirements for the user transaction timeliness,

data freshness, and power saving in RTDBs.

Race-to-idle and never-idle are two major approaches for

power saving. In the race-to-idle method, the processor runs

at the maximum speed to enter a low-power idle state as

early as possible. On the other hand, in the never-idle scheme,

the processor speed is continuously adapted to meet the per-

formance requirement with less power consumptions. In this

paper, we take a race-to-idle approach to reduce the processor

power consumption due to the decreasing effectiveness of the

never-idle approach based on, for example, DVFS [12]. At

runtime, our approach processes real-time update and user

transactions at the highest processor speed, while reducing

the RTDB workload via real-time query aggregation and data

freshness adaptation. When the RTDB is idle with no update

or user transaction to execute, our approach switches to a low-

power processor idle mode based on the idle interval length

estimated considering the data update periods and recent user

transaction arrival pattern.

Despite the importance, related work on RTDB power

management is relatively scarce [3], [2]. A summary of our

key contributions and novelty follows:

• Our real-time query aggregation scheme reduces both

the miss ratio and power consumption rather than doing

trade-offs between them.

• The miss ratio and power consumption are further re-

duced by systematically adapting the freshness by ex-

ploiting not only the current but also the future data

access pattern found by the real-time query aggregation

scheme.

• It is generally applicable to RTDB power management,

since it does not assume a constrained or specialized

transaction/query model.

• It requires neither any special hardware nor extensive

system modeling and tuning. It only needs low-power

idle states supported by almost all processors today.

• Our approach is configurable and relatively easy to use.

For instance, a DBA may choose to only support real-

time query aggregation to save power, while avoiding

any freshness adaptation. Also, s/he just needs to set

only a few parameters for real-time query aggregation

and freshness adaptation considering RTDB application

semantics.

For performance evaluation, we have done a simulation

study modeled after real-world RTDB applications, e.g., air

traffic control, fire detection, and engine diagnosis [10], [11],

[2]. Our approach decreases the deadline miss ratio and

dynamic power consumption compared to the tested baselines,

which represent and enhance state-of-the-art RTDBs, by up

to approximately 38% and 52%, respectively. Even when the

allowed real-time query aggregation and freshness adaption

are limited to minimal degrees,2 our approach reduces the miss

ratio and power consumption by up to roughly 18% and 37%,

respectively, while supporting the desired data freshness.

The remainder of this paper is organized as follows. Re-

lated work is discussed in Section II. The supported trans-

action types, data freshness requirements, and the power-

aware RTDB architecture are discussed in Section III. In

Section IV, our approach for deadline miss ratio and power

consumption reductions in RTDBs is discussed. In Section V,

the performance of our approach and baselines is evaluated via

an extensive simulation study. Finally, the paper is concluded

and future work is discussed in Section VI.

II. RELATED WORK

Generally, research on power/energy management in

database systems is relatively new. It is known that [8] is

the first to provide concrete techniques for energy-efficient

query processing. It explicitly delays queries for combined

processing, while supporting DVFS. It has been followed

by other projects on database power/energy management in

data centers including [13], [14], [15], [16]. In these ap-

proaches, the database energy consumption is reduced for the

increased response time or decreased throughput. However,

naively slowing real-time transactions down in RTDBs for

energy efficiency may incur many deadline misses as dis-

cussed before. Neither do they support real-time transaction

scheduling, concurrency control, or data temporal consistency.

Sensor network databases [17], [18] support relatively simple

in-network data processing, e.g., sensor data aggregation, to

mainly optimize communication costs. In [19], efficient data

freshness management is explored when data are retrieved

from wireless sensors in sequence specialized for rescue or

tactical situations. However, real-time query aggregation and

RTDB power management are not considered.

Surprisingly little work has been done on RTDB power

management. A novel work [2] is the first to support the

desired power consumption and I/O deadline miss ratio, via

multi-input, multi-output (MIMO) control, in an RTDB based

on flash memory. In [3], a control theoretic approach is

developed to support the timeliness of a single periodic real-

time transaction run concurrently with a few interfering non-

real-time transactions in an embedded database. The power

consumption is decreased via dynamic frequency scaling and

sensor data dropping in the feedback loop. However, the gen-

eral applicability of [3] is limited, because it has a constrained

transaction model that supports one real-time user transaction

only. In [13], DVFS based on proportional and integral (PI)

control is applied to decrease the power consumption for

I/O bound queries, while supporting the desired throughput

in a non-RTDB. However, real-time query aggregation and

data freshness adaptation are not considered to reduce the

RTDB power consumption. These projects [2], [3], [13] essen-

tially take never-idle approaches that require extensive system

2In this set-up, the probability for combining two queries is set to 5% and
the bounded data freshness degradation is allowed for only 10% of the data
objects. A detailed description is given in Section V.

modeling and tuning, which should be repeated in different

platforms. Our approach adopts a more general real-time

transaction and data model. Also, it directly considers RTDB

power management issues via dynamic power management

(DPM) more effective than DVFS.

Power-aware real-time scheduling has been well explored.

Related work includes [5], [20], [21], [22], [23] just to name

a few. A good survey of power management in hard real-time

systems is given in [12]. Although the transaction timeliness,

data freshness, and power management in RTDBs are not

directly considered in these approaches, basic principles could

be applied for more effective RTDB power management. Also,

our work could benefit more from previous database research.

For example, approximate query processing techniques are

developed to produce rough results under overload [24], [25].

The miss ratio and power consumption of our approach could

be decreased further, if it is combined with approximate query

processing. In [10], [11], update transactions are deferred as

much as possible to reduce the workload, meeting the data

temporal consistency. Thus, our work is complementary to

these approaches.

III. DATA TYPES, TRANSACTIONS, AND SYSTEM

OVERVIEW

In this section, the data and transaction types and data

freshness requirements considered in this paper are described.

Also, an overview of our RTDB architecture is given.

A. Data Types, Transactions, and Deadlines

• Data Types and Freshness: In our data service model,

there are two types of data: temporal and non-temporal

data. Temporal data, e.g., sensor readings, become out-

dated as time goes by, because the real world status,

e.g., traffic or weather state, may continuously change.

The temporal consistency between the real world state

and the temporal data in the RTDB is maintained based

on the validity intervals [6]. A temporal data item Oi

is associated with a timestamp that indicates the latest

update time. It is considered fresh, i.e., temporally consis-

tent, if (current time − timestamp(Oi) ≤ avi(Oi)) where

avi(Oi) is the absolute validity interval of Oi. On the

other hand, non-temporal data, e.g., a vehicle registration

number, do not become outdated unless users explicitly

modify them. Thus, we focus on managing temporal data

in this paper.

• Transaction Types: In RTDBs, there are two types of

real-time transactions: update and user transactions [6].

A dedicated update transaction periodically updates Oi

at every Pi = 0.5 × avi(Oi) to maintain the freshness

according to the half-half principle [6]. Real-time user

transactions arrive aperiodically to support, for example,

driving route and weather information requests. They

are allowed to read temporal data and read/write non-

temporal data. In general, a real-time transaction Ti reads

and writes sets of data Ri and Wi, respectively. If Ti is

an update transaction for Oi, the read set Ri = ∅ and the

Update

Streams

...

dispatched

Transaction Handler

EDF

Queues

blocked

Block Queue
TS CC FM PM

preempted

aborted/restarted

User

Transactions

committed

Fig. 1. Power-Aware RTDB Architecture

write set Wi = {Oi}. On the other hand, if Ti is a user

transaction, Ri consists of one or more temporal/non-

temporal data. Wi consists of zero or more non-temporal

data. (If Ti is a query, Wi = ∅.)

• Deadlines: The relative deadline of an update transaction

is equal to its period. The relative deadlines of user trans-

actions are determined by a specific RTDB application of

interest, e.g., transportation management or fire detection.

If Ti with a relative deadline Di is released or arrives at

time t, its absolute deadline is t+Di. In this paper, real-

time transactions are assigned firm deadlines. If all the

required read/write operations are completed by t+Di, Ti
is committed successfully. Otherwise, it is aborted upon

the deadline miss to avoid cascading deadline misses due

to intensified data/resource contention.

B. Power-Aware RTDB Architecture

The transaction handler in Figure 1 consists of the trans-

action scheduler (TS), concurrency controller (CC), freshness

manager (FM), and power manager (PM). TS schedules real-

time user transactions and data updates. For the clarity of

the presentation, in this paper, we employ EDF as the basic

scheduling algorithm. In our RTDB architecture shown in

Figure 1, two separate EDF queues are used by TS to schedule

user and update transactions, respectively. Higher priority is

given to update transactions to maintain the data freshness,

which is a common practice in RTDBs [6]. Also, we assume

that enough resources are available to meet all deadlines of

temporal data updates and the freshness requirements enforced

by FM.

Thus, in this paper, we mainly focus on reducing the

miss ratio of user transactions, while decreasing the power

consumption of both user and update transactions via real-

time query aggregation and adaptive freshness management

performed by TS and FM in our power-aware RTDB archi-

tecture that runs on a uniprocessor platform.3 Also, PM in

Figure 1 supports DPM when the system becomes idle.

CC supports the serializability of concurrent transactions.

For concurrency control, we support the two phase locking

with high priority (2PL-HP) scheme [6]. A data conflict arises,

if two transactions access the same data item and at least

3A thorough investigation of designing power-aware RTDBs using multi-
core processors is reserved for future work discussed in Appendix C.

one of them needs to write it. Under 2PL-HP, a low priority

transaction is aborted and restarted upon a data conflict, if

it has locked the data causing the (read/write or write/write)

conflict. However, it gets blocked, if it is requesting the data

already locked by a higher priority transaction in a conflicting

manner. A restarted or blocked transaction is moved to the

block queue. It is inserted back into the EDF ready queue

when the conflicting higher priority transaction(s) commit(s).

IV. DECREASING DEADLINE MISSES AND POWER

CONSUMPTIONS IN RTDBS

Our approach begins to run when the RTDB is initialized.

It continues to run until either the DBA explicitly turns it off

or shuts the system down. By reducing the user and update

workloads, our approach strives to decrease the miss ratio and

increase idle intervals to save power. A detailed description

follows.

A. Merging Real-Time Queries

Algorithm 1: Real-Time Query Aggregation

input : Ti (ith user transaction in the EDF queue)

1 j = i− 1;

2 cnt = 0;

3 while j ≥ 0 and cnt < MaxScan do

4 Ri = Read Set(Ti);
5 Rj = Read Set(Tj);

6 if |Ri ∩Rj | ≥ θ then

7 Rij = Ri ∩Rj ;

8 if Rj is merged already then

9 return;

10 i = j;
11 j −−;

12 cnt++;

In this paper, we only merge read operations of multiple user

transactions. We do not merge update transactions, because

each update transaction in an RTDB periodically updates a

specific temporal data object in a dedicated manner to maintain

the freshness [6]. Neither do we merge the write sets of two

user transactions, since any writes done by each transaction

should be atomic (all or nothing) and separate from the writes

performed by the other transactions [6].

When a user transaction arrives, it is inserted into the

ith (≥ 0) place in the EDF queue in Figure 1 based on its

deadline. Thus, T0 is the user transaction with the earliest

deadline. In this paper, we support lightweight incremental

real-time query aggregation. We attempt to aggregate Ti with

the transaction(s) in front of it when it is inserted into the

EDF queue. Thus, a user transaction with a longer deadline

is likely to be aggregated with more user transactions with

shorter deadlines. By doing this, we intend to reduce the user

transaction load without disrupting transactions with imminent

deadlines.

When a user transaction Ti is inserted into the EDF queue,

Algorithm 1 is executed for real-time query aggregation. First,

Ri and Rj of Ti and Tj where j = i−1 in the EDF queue are

identified. If |Ri ∩Rj | ≥ θ where θ is the specified threshold,

the common data in their read sets are: Rij = Ri ∩ Rj .

In general, a query optimizer in a database system analyzes

queries’ data accesses for performance optimization. Thus,

we exploit the read set information provided by the query

optimizer for real-time query aggregation, incurring little addi-

tional overhead. Alternatively, real-time transactions are often

canned, i.e., predefined, and access specific data elements to

enhance the timeliness [6]. In such a case, Ri and Rj are

known a priori. In both cases, we express Ri and Rj as bit

strings of length m that is the maximum transaction size in

terms of the total number of data accessed by an arbitrary

transaction in the RTDB.4 We compute Rij by doing a bitwise

and operation between Ri and Rj , which is an O(1) time

operation.

Second, our algorithm for merging real-time queries check

whether Rj has already been merged with the real-time queries

ahead of Tj in the EDF queue. If this is true, no more

aggregation is needed. Thus, the algorithm returns.

Otherwise, the loop is iterated to further aggregate user

transactions for at most MaxScan times where MaxScan
is a pre-defined constant to bound the overhead for real-

time query aggregation. Therefore, the time complexity of our

algorithm for real-time user query aggregation is O(1).

When the user transaction at the head of the EDF queue

is executed, the data read by the transaction are shared by

the other transactions with later deadlines, which need to

access the same data. When a later transaction runs, it uses

the common data previously accessed by an earlier deadline

transaction as long as they are still fresh. This is another

reason to bound the EDF queue scanning for real-time query

aggregation by MaxScan. Entire EDF queue scanning incurs

large overheads. Also, data accessed by earlier transactions

may become stale.

B. Adaptive Data Freshness Management

To manage the update workload efficiently, a cost-benefit

model for temporal data updates, which is independent of any

specific data access pattern, is introduced in [9]. For each

temporal data object Oi in the RTDB, the cost is defined as

the update frequency, since the computational cost is higher

for more frequent updates. The access frequency indicates the

benefit of updating Oi. To quantify the cost-benefit relation,

the access update ratio (AUR) for Oi, which represents the

importance of being fresh, is defined:

AUR[i] =
access frequency[i]

update frequency[i]
(1)

Since temporal data are updated periodically, their update

frequencies are already known.

4If a certain data item is accessed by Ti, the corresponding bit in Ri is set
to 1.

In this paper, we use the future access frequency of each

temporal data found during real-time query aggregation to

update AUR[i] for Oi ∈ D where D is the set of all temporal

data in the RTDB. Thus, the AUR reflects the data access

pattern that may vary in time before an actual change happens

unlike [9], which predicts the future AUR purely based on the

recent history.

In our approach, Oi is considered hot, if AUR[i] ≥ 1.

This means the benefit of periodically updating Oi is worth

the computational cost represented by the update frequency.

Otherwise, it is considered cold. In this paper, Dc and Dh

represent the sets of cold and hot data, respectively. Clearly,

D = Dc∪Dh and Dc∩Dh = ∅. Also, |Dc| > |Dh|, if there is

a data access skew. Note that each data item is automatically

classified as hot or cold by our approach without requiring any

involvement of a DBA or any other user.

Algorithm 2: Adaptive QoD Management

input : Dc, α, σ specified by a DBA

1 if t mod PQoD == 0 then

2 i = 0;

3 while i < |Dc| do

4 Pinew
= (1 + σ)× Pi;

5 if Pinew
≤ α× Pimin

then

6 Pi = Pinew
;

7 i++;

In this paper, Algorithm 2 is executed at every quality of

data (QoD) adaptation period, PQoD, to gracefully adapt the

update workload considering the current and near-future data

access pattern. In Algorithm 2, Pimin
is the update period of

Oi before any QoD adaptation. If Oi ∈ Dc, the current update

period Pi is increased to (1+σ)Pi in a QoD adaptation period,

if (1 + σ)Pi ≤ αPimin
where σ is a parameter used to avoid

an abrupt QoD degradation. For example, when σ = 10%,

Pinew
= 1.1×Pi after a QoD degradation for Oi. In addition,

α (≥ 1) is provided to avoid unbounded QoD degradation.

For instance, Pi ≤ 4Pimin
if α = 4. Using our approach, a

DBA aware of the data needs in a specific RTDB application

can set σ and α.

To maintain the freshness of a sensor data item after a

possible QoD degradation, we use the flexible validity interval

(fvi), similar to [9]. Initially, fvi = avi for all data. If

the update period Pi for a less critical data object Oi is

increased to Pinew
, we set fvinew(Oi) = 2 × Pinew

to

maintain the freshness of Oi by updating it at every Pinew
.

Also, Oi is considered fresh if (current time − timestamp(Oi))

≤ fvinew(Oi).

The current QoD in terms of freshness is defined in the

RTDB with N temporal data objects:

QoD =
100

N

N
∑

i=1

Pimin

Pinew

(%) (2)

Also, the QoD lower bound in a specific RTDB application

is:

QoDLB = 100×
[

(1− β) +
β

α

]

(%) (3)

where β = |Dc|/|D|. Thus, QoD ≥ QoDLB at any time

t ≥ 0. For example, a DBA can specify that β = 0.4 such

that the QoD of the coldest 40% of the data in the RTDB is

allowed to be adapted. For instance, when α = 4 and β = 0.4,

QoDLB = 70%. In total, the DBA needs to specify only three

parameters for bounded and graceful QoD adaptation: α, β,

and σ.

The time complexity of one QoD degradation for Oi ∈ Dc

is O(1). Hence, the total time complexity of QoD adaptation

using Algorithm 2 per adaptation period is O(|Dc|) = O(N).

C. Race-to-Idle in RTDBs

In this section, we reduce the RTDB power consumption

via DPM using idle intervals extended by the real-time query

aggregation and adaptive freshness management schemes.

TABLE I
C-STATES USED IN THIS PAPER (SOURCE: [23])

State (Cj) Power (Pj) Latency (δj) Energy (Ej)

C0 (Run) 1 W 0 0
C1 (Standby) 0.5 W 0.1 ms 0.025 mJ
C2 (Dormant) 0.1 W 2 ms 0.9 mJ
C3 (Shutdown) 0.00001 W 10 ms 5 mJ

For RTDB power management, we consider the advanced

configuration and power interface (ACPI) standard that is

widely adopted. In ACPI, P states are performance states.

P0 supports the highest frequency and voltage. A higher

numbered P state spends less power, but provides a lower com-

putational speed due to the reduced frequency and voltage. In

contrast, C states are idle states. In the C0 state (active mode),

the processor executes instructions normally. No instruction is

executed in a low-power state or during a state transition. A

transition between the C0 state and C1 state takes relatively

negligible time and energy. More power is saved in a higher

C state; however, the state transition takes more time and

energy as shown in Table I. The table is adopted from a novel

work on energy-efficient real-time scheduling [23], which has

derived the low-power state model summarized in the table by

analyzing the ARM Cortex-A family processors and FreeScale

Power architecture. In the table, the instantaneous energy

(power) consumption Pj in the state Cj where j > 0 is

normalized to that in the C0 state. The transition latency of

Cj is: δj = δ0→j + δj→0 where δ0→j is the state transition

latency from C0 to Cj and δj→0 is that from Cj to C0. Also,

the energy overhead for Cj is: Ej = E0→j + Ej→0 where

E0→j indicates the energy consumed to switch from C0 to

Cj and Ej→0 is the energy spent to shift back from Cj to C0.

In this paper, we assume that the break-even time Bj = δj for

a low-power state j; that is, an idle interval must be at least

as long as δj to effectively exploit Cj [23], [12].

Algorithm 3: RTDB Dynamic Power Management

1 while true do

2 if busy at time t then

3 Process transactions at the highest speed;

4 else

5 η(t) = release time of the next earliest update −
t;

6 ψ′(i) = estimated length of the ith idle interval;

7 ℓ(i) = min(η(t), ψ′(i));
8 for j = 1; j < Ncs; j++ do

9 Find max
1<j<Ncs

{κδj ≤ ℓ(i)}

10 if 0 < j < Ncs then

11 Switch to the Cj state;

12 while idle do

13 Stay in the Cj state;

14 Compute ψ′(i+ 1);
15 Switch to the P0 state;

In Algorithm 3, our DPM approach performed by PM (Fig-

ure 1) in a platform with Ncs C-states is summarized. In our

approach, the RTDB processes update and user transactions

in the P0 state to process them as fast as possible using the

highest voltage and frequency.

If the RTDB has no update or user transaction to execute

at time t, our DPM scheme computes η(t) = minNk=1
(rk − t)

where rk is the release time of the next periodic instance of the

update task k that periodically updates temporal data object

Ok. Thus, η(t) is found in O(N).

At time t, we also estimate the expected length of the ith

idle interval since the RTDB system initialization due to no

user transaction arrival. To this end, we use an exponentially

weighted moving average (EWMA), which is effective to

smooth out short-term fluctuations of the trend in a time

series [26] (e.g., the lengths of idle intervals observed in time)

and subject to much less overheads than machine learning

techniques (e.g., [27]) are:

ψ′(i) = a× ψ′(i− 1) + (1− a)× ψ(i− 1) (4)

where ψ′(i− 1) and ψ(i− 1) are the previous smoothed idle

interval length estimate and the actual length of the most recent

idle interval, respectively. In Eq 4, a is the forgetting factor

(0 ≤ a ≤ 1). For example, a DBA can set a = 0.6 to ensure

that the impact of ψ(i− 1) is 1% on the smoothed value after

5 idle intervals by recursively solving Eq 4.

The expected length of the ith idle interval is then:

ℓ(i) = min(η(t), ψ′(i)) (5)

If the RTDB has no update or user transaction to execute

at time t, Algorithm 3 finds max
1<j<Ncs

{κδj ≤ ℓ(i)} where κ

(> 1) is a headroom constant used to compensate for possible

errors in estimating ψ′(i) and the overhead of executing

Algorithm 3.5 The CPU then switches to the Cj state that is

the estimated deepest low-power state to save power without

increasing deadline misses. Since there are a constant number

of the C states in a processor, the selection of Cj takes O(1)

time.

When the transition to Cj completes at time tb(> t), the

actual idle interval begins. The system stays in the Cj state

as long as it is idle. If there is an imminent periodic update

job release or a new user transaction arrival at time tf (≥ tb),
our approach switches back to the P0 state. Thus, the actual

length of the ith idle interval that excludes any state transition

latency is: ψ(i) = tf − tb. Algorithm 3 derives ψ′(i+1) using

Eq 4 based on ψ′(i) and ψ(i). Using ψ′(i+1), Algorithm 3 is

re-executed when the system becomes idle again in the future.

In this paper, if ψ(i) < δj (= Bj), we consider that an

estimation error has occurred and normalize it to δj :

e(i) =

{

(δj − ψ(i))/δj if ψ(i) < δj

0 otherwise
(6)

To measure the estimation accuracy, we define the estimation

error ratio:

Pe = 100×Ne/Nall (%) (7)

where Ne and Nall represent the total number of the occurred

estimation errors and that of all the state transitions to one

of the low-power states, respectively. Also, we measure the

average size of the normalized estimation errors:

Me = 100×
Ne
∑

i=1

e(i)/Ne (%) (8)

Note that no estimation error occurs due to periodic updates,

because the periods of temporal data updates in the RTDB are

known a priori. In Section V, Table I, Eq 7, and Eq 8 are

used for performance evaluation.

The time complexity of Algorithm 3 is O(N). Thus, the

total time complexity of our approach, which consists of the

real-time query aggregation, freshness adaptation, and DPM

techniques described in Algorithms 1 − 3, is O(N). It is linear

in terms of the number of the temporal data in the RTDB

but independent of the number of real-time queries. Thus, our

approach is applicable to different RTDB applications with

various user transaction arrival rates and data access patterns.

V. PERFORMANCE EVALUATION

In this section, the performance of our approach and base-

lines is thoroughly compared.

A. Simulation Set-Up and Baselines

In this subsection, the simulation model and experimental

settings for performance evaluation are discussed. Also, the

baselines designed for performance comparisons are described.

TABLE II
SIMULATION SETTINGS FOR DATA AND UPDATES

Parameter Value

#Data Objects 1000
Update Period Uniform[100ms, 50s]
EETi Uniform[3ms, 6ms]
Update Load ≈ 50%

1) Simulation Model: Our simulation settings summarized

in Tables II and III are similar to the ones used in other RTDB

research modeled after data-intensive real-time applications,

e.g., air traffic control, fire detection, and engine diagnosis

[10], [11], [2], [4].

Our simulation settings for temporal data updates are sum-

marized in Table II. As shown in the table, there are 1000

temporal data objects in our (simulated) RTDB. Each data

object Oi (1 ≤ i ≤ 1000) is periodically updated by an

update stream Streami associated with an estimated execution

time EETi and an update period Pi. EETi is uniformly

distributed in a range [3ms, 6ms]. When a periodic update

job is generated, the actual update execution time is derived

by applying a normal distribution Normal(EETi,
√
EETi)

to Streami to model potential update time variations.

When no freshness adaptation is performed, the total up-

date workload requires approximately 50% CPU utilization.

Also, higher priority is given to updates to maintain the data

freshness. Thus, all deadlines of update transactions are met.

In the rest of this paper, we only consider the miss ratio of

user transactions.

The total load applied to the RTDB is 50% + user trans-

action load. In this paper, total loads 60%, 70% 80%, 90%,

100%, 110%, and 120% are applied to evaluate the deadline

miss ratio and power consumption of our approach and the

baselines for different workloads.

TABLE III
SIMULATION SETTINGS FOR USER TRANSACTIONS

Parameter Value

EETi Uniform[5ms, 20ms]
Actual Exec. Time Normal[EETi,

√
EETi]

NDATAi
EETi × Data Access Factor
= [5, 20]

#Actual Data Accesses Normal(NDATAi
,
√

NDATAi
)

Slack Factor [10, 20]

Table III summarizes the simulation set-up for user trans-

actions. In this paper, a source, Sourcei, generates a series

of real-time user transactions whose inter-arrival time is dis-

tributed exponentially. Sourcei is associated with EETi. In

this paper, EETi = Uniform[5ms, 20ms]. Using multiple

sources, we statistically generate transaction groups with dif-

ferent average execution times and numbers of data accesses.

5Generally, a large κ value provides a lower miss ratio for saving less
power or vice versa. In Section V, κ = 1.5.

To increase the workload applied to the RTDB, we increase the

number of sources. As a result, more user transactions arrive

per unit time. When a user transaction is generated, the actual

execution time is generated by applying the normal distribution

Normal(EETi,
√
EETi) to introduce the execution time

variance in a series of user transactions produced by Sourcei.
We derive the average number of data accesses for

Sourcei in proportion to EETi; that is, NDATAi
=

data access factor × EETi = [5, 20]. Thus, a longer

transaction generally accesses more data. When gener-

ating a user transaction, the actual number of data

accesses of the transaction is determined by apply-

ing Normal(NDATAi
,
√

NDATAi
) to introduce a variance

among the user transactions generated by Sourcei.
For a user transaction, deadline = arrival time + estimated

execution time × slack factor in this paper. A slack factor

is uniformly distributed in a range (10, 20). For an update,

deadline = next update period.

2) Baselines: In this paper, we simulate the RTDB system

architecture depicted in Figure 1. The system components for

real-time query aggregation, freshness adaptation, and power

saving can be selectively turned on/off for performance evalu-

ation purposes. Database query aggregation for energy saving

typically requires to delay queries [8], incurring deadline

misses as discussed before. Also, most existing RTDB power

management schemes [2], [3] rely on the never-idle paradigm

that requires complex trade-offs between performance and

power conservation. Therefore, we consider the following

baselines that represent the current state-of-the-art RTDBs

and extend existing database power management schemes for

insightful performance comparisons:

• Power-Unaware RTDB (PU-RTDB): In this baseline,

EDF scheduling and 2PL-HP are supported to process

real-time transactions. Update transactions are assigned

higher priority than user transactions as discussed in

Section III. Our approach and all the baselines apply

the same scheduling and concurrency control techniques

for fair performance comparisons. However, no query

aggregation, freshness adaptation, or power saving is

considered, similar to most existing RTDBs. Thus, this

baseline represents state-of-the-art RTDBs.

• Query Aggregation (QA): In this baseline, we extend the

non-RTDB query aggregation scheme presented in [8]

by supporting our real-time query aggregation scheme

(Section IV-A) to avoid excessive deadline misses. In fact,

we have directly applied the query aggregation technique

presented in [8] without this extension. We have observed

more than 90% of user transactions miss their deadlines

even when the total workload is only 60% and user

transactions are delayed only until the length of the EDF

queue becomes 5. Thus, we use QA instead of [8] for

performance comparisons.

• Freshness Adaptation (FA): This baseline extends the

adaptive QoD management scheme [9] that is power-

unaware as discussed in Section IV-B. In [3], QoD

adaptation is applied to reduce the power consumption for

running a single real-time user transaction. FA extends [3]

in the sense that it supports multiple concurrent real-time

user transactions. Further, FA supports the race-to-idle

method via DPM instead of DVFS used in [3].

One may argue that QA and FA are just variations of

our approach, QA-FA. However, QA and FA considerably

extend the state-of-the-art techniques for power-aware RTDBs.

Without those extensions, the baselines show relatively poor

performance in terms of the miss ratio and power consumption.

TABLE IV
QUERY AGGREGATION AND QOD ADAPTATION PARAMETERS

Parameter Description Value

P (QA) P (query aggregation) 0.05, 0.1, ..., 0.3
α Pi ≤ αPi,min 4
β |Dc|/|D| 0.1, 0.2, ..., 0.5
σ size of a QoD adaptation 10%
PQoD QoD adaptation period 5s

In Table IV, the parameters for query aggregation and QoD

adaptation are summarized. In this section, QAxx indicates

QA with query aggregation probability of xx%. For example,

two arbitrary queries can be merged into one query with 5%

probability in QA05. For performance evaluation, the query

aggregation probabilities 5%, 10%, ..., 30% are used as sum-

marized in Table IV. Data access skews and queries may vary

from RTDB application to application. Rather than considering

the semantics or requirements of a specific application, the

query aggregation probabilities ranging from conservative to

moderate values are used for RTDB performance evaluation.

In a similar vein, FAyy indicates that freshness adaptation

is allowed for yy% of the temporal data objects in the RTDB

where yy = 100×β % that indicates the fraction of temporal

data whose QoD can be adapted. For performance evaluation,

we consider yy = 10%, 20%, ..., 50% to consider potentially

different QoD requirements in different RTDB applications as

summarized in Table IV. Also, we set α = 4 and σ = 10% for

bounded, stepwise QoD adaptation.

Our approach that integrates QAxx and FAyy is indicated

by QAxx-FAyy. In this paper, the same workloads and ex-

perimental settings are used for fair performance comparisons

between the baselines and our approach. Each experimental

run takes 10 minutes. Each performance result is the average

of 20 runs with 95% confidence intervals.

B. Performance Evaluation Results

1) Experiment Set 1 − Impacts of Query Aggregation :

Figure 2 compares the deadline miss ratio of PU-RTDB and

QA with different P (QA) values in Table IV. It also shows

the power saving achieved by QA against PU-RTDB. PU-

RTDB and QA provide 100% QoD, since they do not consider

freshness adaptation.

In Figure 2(a), the miss ratio of the PU-RTDB ranges

between 0.33 ± 0.3% − 39.71 ± 1.97% as the load is in-

creased from 60% to 120%. QA05’s miss ratio ranges between

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

60%
70%

80%
90%

100%
110%

120%

D
ea

dl
in

e
M

is
s

R
at

io
 (

%
)

Workloads

PU-RTDB
QA05
QA10
QA15
QA20
QA25
QA30

(a) Deadline Miss Ratio

 0

 5

 10

 15

 20

 25

 30

 35

 40

60%
70%

80%
90%

100%
110%

120%
P

ow
er

 S
av

in
g

(%
)

Workloads

QA05
QA10
QA15
QA20
QA25
QA30

(b) Power Saving

Fig. 2. Deadline Miss Ratio and Power Conservation in Experiment Set 1

0.09±0.08%−27.44±2.54%. Thus, compared to PU-RTDB,

QA05 reduces the miss ratio by up to approximately 12%

when 120% load is applied to the RTDB. Although P (QA) is

only 5%, it becomes more effective in terms of reducing the

miss ratio when the load increases and more user transactions

are merged as a result.

As shown in Figure 2(a), QA30 supports the lowest miss

ratio among the tested approaches. Its miss ratio is below

4% even when the load is 120%; it decreases the miss ratio

by nearly 36% compared to PU-RTDB. Although the miss

ratio generally grows as the load increases, the growth rate

is decreased substantially, if more real-time query aggregation

is possible. Note that the miss ratio of the tested approaches

is non-zero even when the total load is much below 100%,

since some transactions may get aborted and restarted due

to data/resource conflicts. This indicates the difficulty of

processing real-time transactions in RTDBs.

QA considerably decreases the power consumption espe-

cially when the load is relatively low as shown in Figure 2(b).

The achieved power saving generally decreases as the load

increases, because the RTDB should run at the highest speed

longer to process more real-time transactions as the load

increases. By aggregating real-time queries, it reduces the

workload and switches to the low-power mode when the

RTDB becomes idle. By doing this, compared to PU-RTDB,

QA05 and QA30 decrease the total dynamic power consump-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

60%
70%

80%
90%

100%
110%

120%

D
ea

dl
in

e
M

is
s

R
at

io
 (

%
)

Workloads

PU-RTDB
FA10
FA20
FA30
FA40
FA50

(a) Deadline Miss Ratio

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

60%
70%

80%
90%

100%
110%

120%

P
ow

er
 S

av
in

g
(%

)

Workloads

FA10
FA20
FA30
FA40
FA50

(b) Power Saving

Fig. 3. Deadline Miss Ratio and Power Conservation in Experiment Set 2

tion by 0.84% − 34.58% and 6.95% − 36.78%, respectively.

Being power-unaware, PU-RTDB cannot decrease the power

consumption even when the system is underutilized.

The results in this set of experiments demonstrate that

QA is effective in terms of managing the timeliness and

power consumption in RTDBs, if it is done without artificially

delaying real-time transactions, incurring little overhead. We

have measured the CPU utilization for the tested approaches.

Compared to PU-RTDB, QA05 and QA30 reduce the utiliza-

tion by up to 3% and 15%, respectively. We also observe

QA’s accuracy in estimating the next idle interval length is

acceptable. A more detailed discussion of the utilization and

estimation accuracy for Experiment Sets 1 − 3 is given in

Appendix A due to space limitations.

2) Experiment Set 2 − Impacts of Freshness Adaptation :

In Figure 3(a), the miss ratio of PU-RTDB ranges between

0.33 ± 0.3% − 39.71 ± 1.97% as the load is increased from

60% to 120%.6 The miss ratio of FA10 ranges between

0.12 ± 0.071% − 33.65 ± 2.03% as shown in Figure 3(a).

Compared to PU-RTDB, FA10 reduces the miss ratio by up

to approximately 6%.

FA50 supports the lowest miss ratio among the tested

approaches. Its miss ratio in Figure 3(a) ranges between

6The miss ratio, power consumption, and utilization results of PU-RTDB
are the same as the ones reported in the Experiment Set 1. They are plotted
again in Figure 2 just for easier comparisons.

0.05± 0.02%− 11.36± 1.51%, decreasing the miss ratio by

up to roughly 28% compared to PU-RTDB. Although the miss

ratio grows as the load increases, data freshness adaptation

considerably decreases the growth rate. In our approach, the

required freshness is always supported for each temporal data

item Oi in terms of fvi[i] (or avi[i]) if Oi ∈ Dc (or Oi ∈ Dh).

In Experiment Sets 2 and 3, the QoD supported by FA and

QA-FA is slightly higher than the required QoD lower bounds

because of our periodic QoD adaptation that is bounded and

gradual. Due to space limitations, a more detailed discussion

of the QoD lower bounds and measured QoD is given in

Appendix B.

From Figures 2(a) and 3(a), we observe that QA is more

effective than FA is in terms of reducing the miss ratio

especially when the load is relatively high. This is because the

total update workload is no more than 50% in our simulation

set-up, whereas the user transaction load increases from 10%

to 70% as the total load increases from 60% to 120%. Thus,

QA has more opportunities to aggregate real-time queries as

the load increases. Generally, the update load is predetermined

in RTDBs; however, user transactions may arrive at any time

[6].

From Figures 2(b) and 3(b), we also observe that QA saves

more power than FA does when the load is relatively high and

vice versa. In general, QA is relatively more desirable in that

it does not adapt any quality of service, e.g., QoD, provided by

RTDBs to decrease the miss ratio and power consumption. FA,

however, is effective too, since it is highly likely that different

data have different popularity or importance. Thus, they are

complementary and may create synergistic effects, which we

evaluate next.

3) Experiment Set 3 − Impacts of Integrated Query Aggre-

gation and QoD Adaptation: As shown in Figure 4, QA05-

FA10 that allows minimal real-time query aggregation and

freshness adaptation already decreases the miss ratio and

power consumption by up to approximately 18% and 37%

compared to PU-RTDB.

The highest miss ratio of QA15-FA30, which supports mod-

erate query merging and freshness adaptation, is 4.64±0.88%
for the 120% load. Compared to PU-RTDB, it decreases the

miss ratio by approximately 34% when the load is 120%. The

miss ratio of QA15-FA30 for 120% load is approximately 2%

higher than that of QA30 (Figure 2(b)) and 6% lower than

that of FA50 (Figure 3(b)). Also, for 120% load, QA15-FA30

saves roughly 1% less and 2.5% more power than QA30 and

FA50 do.

Therefore, the miss ratio and power reductions of QA15-

FA30 are comparable to those of QA30 and FA50, which

support the highest degree of real-time query aggregation and

freshness adaptation in our experiments. This is because QA

and FA together decrease both user and update transaction

workloads, mitigating the conflicts among the timeliness,

freshness, and power saving requirements as discussed in

Section I.

The miss ratio of QA30-FA50 is below 0.05% for all the

tested RTDB workloads. Thus, the miss ratio of QA30-FA50 is

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

60%
70%

80%
90%

100%
110%

120%

D
ea

dl
in

e
M

is
s

R
at

io
 (

%
)

Workloads

PU-RTDB
QA05-FA10
QA15-FA30
QA30-FA50

(a) Deadline Miss Ratio

 0

 10

 20

 30

 40

 50

 60

60%
70%

80%
90%

100%
110%

120%

P
ow

er
 S

av
in

g
(%

)

Workloads

QA05-FA10
QA15-FA30
QA30-FA50

(b) Power Saving

Fig. 4. Deadline Miss Ratio and Power Conservation in Experiment Set 3

invisible in Figure 4(a). Compared to PU-RTDB, it decreases

the power consumption by approximately 19% − 52% as

plotted in Figure 4(b).

VI. CONCLUSIONS AND FUTURE WORK

It is desirable yet challenging to process real-time transac-

tions in a timely manner using fresh data, while consuming

less power in real-time databases. In this paper, we present

an effective approaches for real-time query aggregation and

adaptive data freshness management to decrease both deadline

misses and power consumptions in RTDBs. The miss ratio and

power consumption of our approach are thoroughly compared

to those of the baselines that represent and improve state-of-

the-art RTDBs. Our approach decreases the deadline miss ratio

and power consumption by up to approximately 38% and 52%,

respectively. Also, we observe that our approaches comple-

ment each other in terms of decreasing the user transaction

and temporal data update workloads to decrease the deadline

miss ratio and power spending. Finally, future research issues

are discussed in Appendix C.

REFERENCES

[1] “eXtremeDB, a fast, reliable and cost-effective embedded database
system for embedded systems and intelligent devices.” [Online].
Available: http://www.mcobject.com/emb

[2] W. Kang and S. H. Son, “Power- and time-aware buffer cache manage-
ment for real-time embedded databases,” Journal of Systems Architecture

- Embedded Systems Design, vol. 58, no. 6-7, pp. 233–246, 2012.

[3] W. Kang and J. Chung, “QoS Management for Embedded Databases
in Multicore-Based Embedded Systems,” Mobile Information Systems,
2015.

[4] T. Gustafsson, H. Hallqvist, and J. Hansson, “A Similarity-Aware
Multiversion Concurrency Control and Updating Algorithm for Up-
To-Date Snapshots of Data,” in Euromicro Conference on Real-Time

Systems, 2005.

[5] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,” ACM

Transactions on Algorithms, vol. 3, no. 4, 2007.

[6] K. Y. Lam and T. W. Kuo, Eds., Real-Time Database Systems. Kluwer
Academic Publishers, 2006.

[7] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and A. Warfield,
“Characterizing storage workloads with counter stacks,” in USENIX

Symposium on Operating Systems Design and Implementation, 2014.

[8] W. Lang and J. M. Patel, “Towards eco-friendly database management
systems,” in Biennial Conference on Innovative Database Systems

Research, 2009.

[9] K. D. Kang, S. H. Son, and J. A. Stankovic, “Managing Deadline
Miss Ratio and Sensor Data Freshness in Real-Time Databases,” IEEE

Transactions on Knowledge and Data Engineering, vol. 16, no. 10, Oct.
2004.

[10] M. Xiong, S. Han, K.-Y. Lam, and D. Chen, “Deferrable scheduling for
maintaining real-time data freshness: Algorithms, analysis, and results,”
IEEE Transactions on Computers, vol. 57, no. 7, p. 952964, 2008.

[11] S. Han, D. Chen, M. Xiong, K.-Y. Lam, A. K. Mok, and K. Ramam-
ritham, “Schedulability analysis of deferrable scheduling algorithms for
maintaining real-time data freshness,” IEEE Transactions on Computers,
vol. 63, no. 4, pp. 979 – 994, 2014.

[12] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-Aware
Scheduling for Real-Time Systems: A Survey,” ACM Transactions on

Embedded Computing Systems, vol. 15, no. 1, 2016.

[13] Z. Xu, X. Wang, and Y. cheng Tu, “Power-Aware Throughput Control
for Database Management Systems,” in International Conference on

Autonomic Computing, 2013.

[14] Y.-C. Tu, X. Wang, B. Zeng, and Z. Xu, “A System for Energy-Efficient
Data Management,” SIGMOD Record, vol. 43, no. 1, pp. 21–26, 2014.

[15] M. Kunjir, P. K. Birwa, and J. R. Haritsa, “Peak power plays in
database engines,” in International Conference on Extending Database

Technology, 2012.

[16] Z. Xu, Y.-C. Tu, and X. Wang, “Online Energy Estimation of Relational
Operations in Database Systems,” IEEE Transactions on Computers,
vol. 64, no. 11, pp. 3223–3236, 2015.

[17] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An Acquisitional Query Processing System for Sensor Networks,” ACM

Transactions on Database Systems, vol. 30, no. 1, pp. 122–173, 2005.

[18] N. Tsiftes and A. Dunkels, “A Database in Every Sensor,” in ACM

Conference on Embedded Networked Sensor Systems, 2011.

[19] S. Hu and et al., “Data Acquisition for Real-time Decision-making under
Freshness Constraints,” in IEEE Real-Time Systems Symposium, 2015.

[20] M. Völp, M. Hähnel, and A. Lackorzynski, “Has energy surpassed
timeliness? - Scheduling energy-constrained mixed-criticality systems,”
in IEEE Real-Time and Embedded Technology and Applications Sym-

posium, 2014.

[21] G. Cao and A. A. Ravindran, “Energy Efficient Soft Real-Time Comput-
ing through Cross-Layer Predictive Control,” in International Workshop

on Feedback Computing, 2014.

[22] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann, “POET: a portable
approach to minimizing energy under soft real-time constraints,” in IEEE

Real-Time and Embedded Technology and Applications Symposium,
2015.

[23] V. Legout, M. Jan, and L. Pautet, “Scheduling algorithms to reduce the
static energy consumption of real-time systems,” Real-Time Systems,
vol. 51, no. 2, pp. 153–191, 2015.

[24] A. Deshpande, Z. Ives, and V. Raman, “Adaptive Query Processing,”
Foundations and Trends in Databases, vol. 1, no. 1, pp. 1–140, 2007.

[25] S. Babu and P. Bizarro, “Adaptive Query Processing in the Looking
Glass,” in Conference on Innovative Data Systems Research, January
2005.

[26] G. Arce, Nonlinear Signal Processing: A Statistical Approach. Wiley,
2005.

[27] Y. Zhang, Y. Liu, L. Zhuang, X. Liu, F. Zhao, and Q. Li, “Accurate
CPU Power Modeling for Multicore Smartphones,” Microsoft, Tech.
Rep. MSR-TR-2015-9, 2015.

APPENDIX

 30

 40

 50

 60

 70

 80

 90

 100

60%
70%

80%
90%

100%
110%

120%

U
til

iz
at

io
n

(%
)

Workloads

PU-RTDB
QA05
QA10
QA15
QA20
QA25
QA30

(a) Experiment Set 1

 30

 40

 50

 60

 70

 80

 90

 100

60%
70%

80%
90%

100%
110%

120%

U
til

iz
at

io
n

(%
)

Workloads

PU-RTDB
FA10
FA20
FA30
FA40
FA50

(b) Experiment Set 2

 30

 40

 50

 60

 70

 80

 90

 100

60%
70%

80%
90%

100%
110%

120%

U
til

iz
at

io
n

(%
)

Workloads

PU-RTDB
QA05-FA10
QA15-FA30
QA30-FA50

(c) Experiment Set 3

Fig. 5. CPU Utilization

A. Utilization Measurements and Idle Length Estimation Er-

rors

In Experiment Set 1, the utilization of the PU-RTDB ranges

between 59.49% − 99.23% for the 60% − 120% loads. In

Figure 5(a), QA05 and QA30 reduce the utilization by up to

3% and 15% compared to PU-RTDB. Notably, the magnitude

of power saving by QA05 and QA30 in Figure 2(b) is bigger

than that of the utilization decrease, because QA or FA

switches to a low-power state when the RTDB is idle.

In Experiment Set 1, the estimation error ratio Pe (Eq 7)

ranges between 0.25± 0.03%− 2.04± 0.05%. Our estimation

accuracy is high in terms of Pe because: 1) the EWMA is

effective to track the trend in a time series [26] and 2) the

periods of temporal data updates used together with ψ′(i)
in Eq 5 are known in advance. Although Me (Eq 8) ranges

between 2.5± 0.46% and 10.39± 0.49%, it has little impact

on the miss ratio and power consumption because: 1) Pe is

low, 2) a 10% estimation error is much smaller than the user

transaction execution times and relative deadlines, and 3) the

CPU spends only a small amount of time in the C3 state due to

δ3 that is 100 and 5 times longer than δ1 and δ2, respectively.

More specifically, a 10% estimation error is equal to 0.01ms,

0.2ms, and 1ms with respect to δ1, δ2, and δ3 in Table I. On the

other hand, the user transaction execution times and deadlines

range between [5ms, 20ms] and [50ms, 400ms], respectively

(Table III). Also, when P (QA) = 0.3 that provides the highest

chance for query aggregation among the tested P (QA) values,

the CPU spends only 1.1% and 0.04% of the time in the C3

state for the 60% and 120% loads, respectively. In particular,

for the 60% load, QA30 spends approximately 64.2%, 3.34%,

31.35%, and 1.1% of the time in the C0, C1, C2, and C3

states, respectively. When the load is 120%, it spends 93.09%,

1.34%, 5.52%, and 0.04% of the time in the C0, C1, C2, and

C3 states, respectively. In Experiment Sets 1− 3, we observe

that the amount of the time spent by QA, FA, and QA-FA in

the C-states generally decreases in C0, C2, C1, and C3 order.

In Experiment Set 2, FA decreases the utilization by

3% − 17% compared to the PU-RTDB as shown in Fig-

ure 5(b). For the tested workloads, Pe and Me range between

0.05±0.01%−2.14±0.07% and 2.46±0.48%−12.08±0.64%,

respectively. In FA50, which supports the largest QoD adap-

tation, the processor spends 4.95% and 0.09% of the time in

the C3 state for the 60% and 120% loads, respectively. FA

decreases the utilization more for the relatively low loads,

because fewer user transactions access temporal data. As

a result, more data become cold and subject to freshness

adaptation. Thus, it spends more time in the C3 state than

QA did in Experiment Set 1 especially when the load is low.

In Experiment Set 3, compared to PU-RTDB, QA05-FA10,

QA15-FA30, and QA30-FA50 in Figure 5(c) decrease the

utilization by up to approximately 6%, 17%, and 29%, re-

spectively. Due to the effective cooperation between QA and

FA, QA-FA decreases the utilization more substantially than

QA or FA does separately. Pe ranges between 0.11±0.01%−
2.3± 0.04% and Me between 2.75± 0.59%− 11.74± 0.45%,

similar to Experiment Sets 1 and 2. QA-FA spends the largest

amount of time in the C3 state among the tested approaches

by doing both query aggregation and freshness adaptation. In

particular, QA30-FA50 spends 5.49% and 0.6% of the time in

the C3 state for the 60% and 120% loads, respectively.

B. QoD Measurements

In our performance evaluation, α = 4 and σ = 10% as

described in Section V. In addition, different values of β
= |Dc|/|D| = 0.1, 0.2, ..., 0.5, are used. The lower bounds

of the QoD for different β values computed using Eq 3 are

summarized in Table V.

TABLE V
QOD LOWER BOUNDS WHEN α = 4

β QoD Lower Bound

0.1 (FA10) 92.5%
0.2 (FA20) 85%
0.3 (FA30) 77.5%
0.4 (FA40) 70%
0.5 (FA50) 62.5%

 0

 20

 40

 60

 80

 100

60% - 120%

Q
ua

lit
y

of
 D

at
a

(%
)

Workloads

PU-RTDB
FA10
FA20
FA30
FA40
FA50

Fig. 6. Quality of Data Supported by QA (Experiment Set 2)

Figure 6 shows the QoD measured in the Experiment Set

2. (The confidence intervals are invisible in Figure 6 for their

small sizes.) As shown in the figure, FA always supports the

QoD requirements. More specifically, it supports a bit higher

QoD than the QoD lower bounds summarized in Table V.

This is because the freshness is only adapted by increasing

the periods of the data in the set Dc by σ = 10% at each QoD

adaptation, which is performed every 5s in our performance

evaluation. In Experiment Set 3, we have observed similar

QoD results in QA-FA, since the same QoD parameters are

used for performance evaluation. In contrast, PU-RTDB and

QA always support 100% QoD, since they do not consider

adaptive freshness management as discussed previously.

C. Future Work Discussions

There are several possible directions for future research

on power-aware RTDBs, which has received relatively little

attention despite the importance:

• Enhancing the accuracy in estimating the next idle inter-

val is a key issue for DPM in RTDBs. Machine learning

techniques could be applied to enhance the accuracy.

However, they are relatively heavy in terms of com-

putation. Moreover, a supervised learning method may

perform poorly when the training set used to develop a

model does not represent unforeseen idle interval lengths,

which may vary in time, well. On the other hand, an

unsupervised learning algorithm may take a long time or

even fail to derive (learn) unknown parameters necessary

for a prediction. In general, the applicability of machine

learning to timeliness and power management in RTDBs

is largely unknown.

• Effective real-time query optimization, transaction

scheduling, and concurrency control techniques may

considerably reduce potential data/resource contention

and corresponding transaction aborts/restarts. As a

result, the deadline miss ratio and power consumption

of RTDBs can be decreased. Although transaction

scheduling and concurrency control in RTDBs have

been studied extensively [6], most existing techniques

do not consider power/energy consumptions. It might

be possible to adapt/modify them to support power

conservation as well. Or, it might be necessary to

explore fundamentally different approaches.

• More power could be saved by applying other power

management techniques supported by hardware, e.g.,

DVFS, together with DPM. A related challenge is how

to avoid increasing deadline misses or losing opportuni-

ties for DPM due to slower real-time query processing

caused by the never-idle method. A promising approach

could be investigating a hybrid method that seamlessly

integrates the never-idle and race-to-idle techniques, e.g.,

DVFS and DPM, to further decrease the miss ratio and

power consumption in RTDBs with little complexity and

overhead.

• Multicore processors could be both a blessing and a

curse for power-aware RTDBs. At first glance, one may

think more transactions/queries could be processed con-

currently using multiple cores. However, a naive approach

may suffer from severe contention for shared data and

resources, e.g., the system bus and memory controllers,

among the cores. As a result, it might increase deadline

misses or power consumptions in reality. It is largely un-

known how to design power-aware RTDBs for multicore

platforms. For example, our real-time query aggregation

scheme could help the RTDB reduce data/resource con-

tention. However, a difficult problem of assigning real-

time transactions/queries to the cores to minimize the

data/resource contention, deadline miss ratio, and power

consumption remains open.

Note that this list is neither exhaustive nor complete; there

could be other important issues not discussed here. However,

a key lesson we learned from this work is that it is possible

to reduce both deadline misses and power consumptions in

RTDBs, while supporting the desired QoD. This approach

could be extended to further enhance the timeliness and

power efficiency of RTDBs by exploring more effective real-

time query optimization, transaction scheduling, concurrency

control, and RTDB system design techniques that consider

inherent RTDB characteristics, real-time data semantics, or

advanced hardware features.

ACKNOWLEDGMENT

We appreciate anonymous reviewers for their help to improve

the paper. This work was supported, in part, by NSF grant

CNS-1526932.

