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Abstract—In data-intensive real-time embedded applications,
it is desirable to process data service requests in a timely manner
using fresh data, consuming less power. However, related work is
relatively scarce. In this paper, we present an effective approach
to decrease both the deadline miss ratio and power consumption
by merging similar real-time transactions, while systematically
adapting the data freshness. In a simulation study, our approach
considerably reduces deadline misses and power consumptions
compared to the state-of-the-art baselines, supporting the re-
quired data freshness.

I. INTRODUCTION

The demand for real-time data services in embedded sys-
tems is increasing. For example, small-footprint embedded
databases, e.g., [1], [2], [3], [4], are developed to support real-
time embedded applications, e.g., energy-efficient avionics,
medical devices, firefighting, real-time engine diagnosis, and
traffic management by roadside units. In such applications,
it is important to process real-time transactions and queries
(read-only transactions) in a timely manner using fresh (i.e.,
temporally consistent) data that represent the current real-
world status, while saving power.

However, achieving this objective is challenging. It is known
that optimal energy scheduling is intractable even in a single
processor with dynamic voltage and frequency scaling (DVES)
and a low-power idle state [5]. The problem becomes harder
in RTDBs due to additional challenges. The timeliness of user
transactions, data freshness, and power saving requirements
may compete with each other. In RTDBs, usually dedicated
update transactions are used to periodically refresh temporal
data, e.g., sensor readings, to ensure the freshness. User
transactions analyze them to provide real-time data services.
If higher priority is given to user transactions, their timeliness
can be improved at the cost of the decreased data freshness or
vice versa. Simply consuming more computational resources
and power to support the timeliness and data freshness is not
desirable either. User transactions may arrive aperiodically
depending on the current real-world status, e.g., the traffic
or weather conditions. Also, transactions may get aborted
and restarted due to data/resource conflicts unknown a priori,
incurring deadline misses [6]. Thus, in this paper, we explore
effective heuristics to decrease both the deadline miss ratio
and power consumption in RTDBs.

In a database system, multiple queries often access common
data. For example, traffic data at busy intersections or severe

weather data are usually accessed more often. In fact, large
data access skews are prevalent [7]. For example, the well-
known 80/20 rule indicates that 20% of data are accessed for
80% of accesses. Thus, multiple queries can be merged into
a single query to avoid repeated data access and processing.
However, a direct application of this approach may result
in many deadline misses in RTDBs, since queries should be
delayed to get batched together. For instance, Lang et al. [8]
intentionally delay queries to combine them in non-RTDBs.
They decrease the energy consumption by up to 54% at the
cost of a 43% increase in the average response time.

To combine real-time queries without jeopardizing the time-
liness, our approach schedules the transaction with the highest
priority (e.g., the earliest deadline transaction) first, while
scanning the ready queue sorted in non-ascending priority
order backwards to merge similar user transactions together
in the background.! Thus, our approach avoids duplicate data
access and processing as much as possible without disrupting
high priority transactions at or near the head of the queue.
Thus, it is compatible with any priority-driven scheduling
algorithm.

To further decrease the deadline miss ratio and power con-
sumption, we also extend the adaptive freshness management
scheme [9]. It gracefully adapts the data freshness within a
range specified by a database administrator (DBA) or an RTDB
application designer aware of the data needs in a specific
RTDB application, e.g., traffic control or fire detection, by
leveraging the (near) future data access pattern analyzed by our
real-time query aggregation scheme, incurring little additional
overhead.

Our real-time query aggregation and adaptive data freshness
management schemes cooperate with each other to mitigate
the additional RTDB challenges discussed before. First, our
query aggregation technique merges multiple aperiodic user
transactions that access common data when they arrive simul-
taneously upon, for example, a traffic incident or fire break-
out. By decreasing the user transaction workload, it meets
more user transaction deadlines, incurring less data/resource
conflicts among them. Second, our approach for adaptive
freshness management decreases the update load, which could
be substantial in RTDBs [10], [11], [9], to further decrease

! Although read operations of transactions as well as queries are merged
in our approach, our approach is called real-time query aggregation to be
consistent with the well accepted term, query aggregation [8].



deadline misses and power consumptions. Moreover, by reduc-
ing both user and update workloads, our approaches alleviate
data/resource contention between user and update transactions
too. In sum, they considerably relieve the tension among the
competing requirements for the user transaction timeliness,
data freshness, and power saving in RTDBs.

Race-to-idle and never-idle are two major approaches for
power saving. In the race-to-idle method, the processor runs
at the maximum speed to enter a low-power idle state as
early as possible. On the other hand, in the never-idle scheme,
the processor speed is continuously adapted to meet the per-
formance requirement with less power consumptions. In this
paper, we take a race-to-idle approach to reduce the processor
power consumption due to the decreasing effectiveness of the
never-idle approach based on, for example, DVFS [12]. At
runtime, our approach processes real-time update and user
transactions at the highest processor speed, while reducing
the RTDB workload via real-time query aggregation and data
freshness adaptation. When the RTDB is idle with no update
or user transaction to execute, our approach switches to a low-
power processor idle mode based on the idle interval length
estimated considering the data update periods and recent user
transaction arrival pattern.

Despite the importance, related work on RTDB power
management is relatively scarce [3], [2]. A summary of our
key contributions and novelty follows:

e Our real-time query aggregation scheme reduces both
the miss ratio and power consumption rather than doing
trade-offs between them.

e The miss ratio and power consumption are further re-
duced by systematically adapting the freshness by ex-
ploiting not only the current but also the future data
access pattern found by the real-time query aggregation
scheme.

o It is generally applicable to RTDB power management,
since it does not assume a constrained or specialized
transaction/query model.

o It requires neither any special hardware nor extensive
system modeling and tuning. It only needs low-power
idle states supported by almost all processors today.

o Our approach is configurable and relatively easy to use.
For instance, a DBA may choose to only support real-
time query aggregation to save power, while avoiding
any freshness adaptation. Also, s/he just needs to set
only a few parameters for real-time query aggregation
and freshness adaptation considering RTDB application
semantics.

For performance evaluation, we have done a simulation
study modeled after real-world RTDB applications, e.g., air
traffic control, fire detection, and engine diagnosis [10], [11],
[2]. Our approach decreases the deadline miss ratio and
dynamic power consumption compared to the tested baselines,
which represent and enhance state-of-the-art RTDBs, by up
to approximately 38% and 52%, respectively. Even when the
allowed real-time query aggregation and freshness adaption

are limited to minimal degrees,? our approach reduces the miss
ratio and power consumption by up to roughly 18% and 37%,
respectively, while supporting the desired data freshness.

The remainder of this paper is organized as follows. Re-
lated work is discussed in Section II. The supported trans-
action types, data freshness requirements, and the power-
aware RTDB architecture are discussed in Section III. In
Section IV, our approach for deadline miss ratio and power
consumption reductions in RTDBs is discussed. In Section V,
the performance of our approach and baselines is evaluated via
an extensive simulation study. Finally, the paper is concluded
and future work is discussed in Section VI.

II. RELATED WORK

Generally, research on power/energy management in
database systems is relatively new. It is known that [8] is
the first to provide concrete techniques for energy-efficient
query processing. It explicitly delays queries for combined
processing, while supporting DVFS. It has been followed
by other projects on database power/energy management in
data centers including [13], [14], [15], [16]. In these ap-
proaches, the database energy consumption is reduced for the
increased response time or decreased throughput. However,
naively slowing real-time transactions down in RTDBs for
energy efficiency may incur many deadline misses as dis-
cussed before. Neither do they support real-time transaction
scheduling, concurrency control, or data temporal consistency.
Sensor network databases [17], [18] support relatively simple
in-network data processing, e.g., sensor data aggregation, to
mainly optimize communication costs. In [19], efficient data
freshness management is explored when data are retrieved
from wireless sensors in sequence specialized for rescue or
tactical situations. However, real-time query aggregation and
RTDB power management are not considered.

Surprisingly little work has been done on RTDB power
management. A novel work [2] is the first to support the
desired power consumption and I/O deadline miss ratio, via
multi-input, multi-output (MIMO) control, in an RTDB based
on flash memory. In [3], a control theoretic approach is
developed to support the timeliness of a single periodic real-
time transaction run concurrently with a few interfering non-
real-time transactions in an embedded database. The power
consumption is decreased via dynamic frequency scaling and
sensor data dropping in the feedback loop. However, the gen-
eral applicability of [3] is limited, because it has a constrained
transaction model that supports one real-time user transaction
only. In [13], DVFS based on proportional and integral (PI)
control is applied to decrease the power consumption for
I/O bound queries, while supporting the desired throughput
in a non-RTDB. However, real-time query aggregation and
data freshness adaptation are not considered to reduce the
RTDB power consumption. These projects [2], [3], [13] essen-
tially take never-idle approaches that require extensive system

2In this set-up, the probability for combining two queries is set to 5% and
the bounded data freshness degradation is allowed for only 10% of the data
objects. A detailed description is given in Section V.



modeling and tuning, which should be repeated in different
platforms. Our approach adopts a more general real-time
transaction and data model. Also, it directly considers RTDB
power management issues via dynamic power management
(DPM) more effective than DVFS.

Power-aware real-time scheduling has been well explored.
Related work includes [5], [20], [21], [22], [23] just to name
a few. A good survey of power management in hard real-time
systems is given in [12]. Although the transaction timeliness,
data freshness, and power management in RTDBs are not
directly considered in these approaches, basic principles could
be applied for more effective RTDB power management. Also,
our work could benefit more from previous database research.
For example, approximate query processing techniques are
developed to produce rough results under overload [24], [25].
The miss ratio and power consumption of our approach could
be decreased further, if it is combined with approximate query
processing. In [10], [11], update transactions are deferred as
much as possible to reduce the workload, meeting the data
temporal consistency. Thus, our work is complementary to
these approaches.

III. DATA TYPES, TRANSACTIONS, AND SYSTEM
OVERVIEW

In this section, the data and transaction types and data
freshness requirements considered in this paper are described.
Also, an overview of our RTDB architecture is given.

A. Data Types, Transactions, and Deadlines

« Data Types and Freshness: In our data service model,
there are two types of data: temporal and non-temporal
data. Temporal data, e.g., sensor readings, become out-
dated as time goes by, because the real world status,
e.g., traffic or weather state, may continuously change.
The temporal consistency between the real world state
and the temporal data in the RTDB is maintained based
on the validity intervals [6]. A temporal data item O;
is associated with a timestamp that indicates the latest
update time. It is considered fresh, i.e., temporally consis-
tent, if (current time — timestamp(O;) < avi(O;)) where
avi(O;) is the absolute validity interval of O;. On the
other hand, non-temporal data, e.g., a vehicle registration
number, do not become outdated unless users explicitly
modify them. Thus, we focus on managing temporal data
in this paper.

o Transaction Types: In RTDBs, there are two types of
real-time transactions: update and user transactions [6].
A dedicated update transaction periodically updates O,
at every P, = 0.5 x avi(O;) to maintain the freshness
according to the half-half principle [6]. Real-time user
transactions arrive aperiodically to support, for example,
driving route and weather information requests. They
are allowed to read temporal data and read/write non-
temporal data. In general, a real-time transaction T; reads
and writes sets of data R; and W, respectively. If T; is
an update transaction for O;, the read set R; = () and the
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Fig. 1. Power-Aware RTDB Architecture

write set W; = {O;}. On the other hand, if T; is a user
transaction, R; consists of one or more temporal/non-
temporal data. W; consists of zero or more non-temporal
data. (If T} is a query, W; = (.)

o Deadlines: The relative deadline of an update transaction
is equal to its period. The relative deadlines of user trans-
actions are determined by a specific RTDB application of
interest, e.g., transportation management or fire detection.
If T; with a relative deadline D); is released or arrives at
time ¢, its absolute deadline is ¢+ D;. In this paper, real-
time transactions are assigned firm deadlines. If all the
required read/write operations are completed by t+D;, T;
is committed successfully. Otherwise, it is aborted upon
the deadline miss to avoid cascading deadline misses due
to intensified data/resource contention.

B. Power-Aware RTDB Architecture

The transaction handler in Figure 1 consists of the trans-
action scheduler (TS), concurrency controller (CC), freshness
manager (FM), and power manager (PM). TS schedules real-
time user transactions and data updates. For the clarity of
the presentation, in this paper, we employ EDF as the basic
scheduling algorithm. In our RTDB architecture shown in
Figure 1, two separate EDF queues are used by TS to schedule
user and update transactions, respectively. Higher priority is
given to update transactions to maintain the data freshness,
which is a common practice in RTDBs [6]. Also, we assume
that enough resources are available to meet all deadlines of
temporal data updates and the freshness requirements enforced
by FM.

Thus, in this paper, we mainly focus on reducing the
miss ratio of user transactions, while decreasing the power
consumption of both user and update transactions via real-
time query aggregation and adaptive freshness management
performed by TS and FM in our power-aware RTDB archi-
tecture that runs on a uniprocessor platform.® Also, PM in
Figure 1 supports DPM when the system becomes idle.

CC supports the serializability of concurrent transactions.
For concurrency control, we support the two phase locking
with high priority (2PL-HP) scheme [6]. A data conflict arises,
if two transactions access the same data item and at least

3A thorough investigation of designing power-aware RTDBs using multi-
core processors is reserved for future work discussed in Appendix C.



one of them needs to write it. Under 2PL-HP, a low priority
transaction is aborted and restarted upon a data conflict, if
it has locked the data causing the (read/write or write/write)
conflict. However, it gets blocked, if it is requesting the data
already locked by a higher priority transaction in a conflicting
manner. A restarted or blocked transaction is moved to the
block queue. It is inserted back into the EDF ready queue
when the conflicting higher priority transaction(s) commit(s).

IV. DECREASING DEADLINE MISSES AND POWER
CONSUMPTIONS IN RTDBS

Our approach begins to run when the RTDB is initialized.
It continues to run until either the DBA explicitly turns it off
or shuts the system down. By reducing the user and update
workloads, our approach strives to decrease the miss ratio and
increase idle intervals to save power. A detailed description
follows.

A. Merging Real-Time Queries

Algorithm 1: Real-Time Query Aggregation

input : T} (i*" user transaction in the EDF queue)

1 j=i—1;

2 cnt =0;

3 while j > 0 and cnt < MaxScan do
4 R; = Read Set(T5);

5 R; = Read Set(T});

6 lf|RlﬂRJ| > 0 then

7 L Rij = Ri N Rj;

8 if R; is merged already then
9 L return;

10 1=7;

1 J—=

12 cnt++;

In this paper, we only merge read operations of multiple user
transactions. We do not merge update transactions, because
each update transaction in an RTDB periodically updates a
specific temporal data object in a dedicated manner to maintain
the freshness [6]. Neither do we merge the write sets of two
user transactions, since any writes done by each transaction
should be atomic (all or nothing) and separate from the writes
performed by the other transactions [6].

When a user transaction arrives, it is inserted into the
it" (> 0) place in the EDF queue in Figure 1 based on its
deadline. Thus, Ty is the user transaction with the earliest
deadline. In this paper, we support lightweight incremental
real-time query aggregation. We attempt to aggregate T; with
the transaction(s) in front of it when it is inserted into the
EDF queue. Thus, a user transaction with a longer deadline
is likely to be aggregated with more user transactions with
shorter deadlines. By doing this, we intend to reduce the user
transaction load without disrupting transactions with imminent
deadlines.

When a user transaction 7; is inserted into the EDF queue,
Algorithm 1 is executed for real-time query aggregation. First,
R; and R; of T; and T} where j = i —1 in the EDF queue are
identified. If |[R; N R;| > 6 where 6 is the specified threshold,
the common data in their read sets are: R;; = R; N R;.
In general, a query optimizer in a database system analyzes
queries’ data accesses for performance optimization. Thus,
we exploit the read set information provided by the query
optimizer for real-time query aggregation, incurring little addi-
tional overhead. Alternatively, real-time transactions are often
canned, i.e., predefined, and access specific data elements to
enhance the timeliness [6]. In such a case, R; and R; are
known a priori. In both cases, we express R; and R; as bit
strings of length m that is the maximum transaction size in
terms of the total number of data accessed by an arbitrary
transaction in the RTDB.* We compute R;; by doing a bitwise
and operation between R; and R;, which is an O(1) time
operation.

Second, our algorithm for merging real-time queries check
whether I?; has already been merged with the real-time queries
ahead of T in the EDF queue. If this is true, no more
aggregation is needed. Thus, the algorithm returns.

Otherwise, the loop is iterated to further aggregate user
transactions for at most MaxScan times where MaxScan
is a pre-defined constant to bound the overhead for real-
time query aggregation. Therefore, the time complexity of our
algorithm for real-time user query aggregation is O(1).

When the user transaction at the head of the EDF queue
is executed, the data read by the transaction are shared by
the other transactions with later deadlines, which need to
access the same data. When a later transaction runs, it uses
the common data previously accessed by an earlier deadline
transaction as long as they are still fresh. This is another
reason to bound the EDF queue scanning for real-time query
aggregation by MaxScan. Entire EDF queue scanning incurs
large overheads. Also, data accessed by earlier transactions
may become stale.

B. Adaptive Data Freshness Management

To manage the update workload efficiently, a cost-benefit
model for temporal data updates, which is independent of any
specific data access pattern, is introduced in [9]. For each
temporal data object O; in the RTDB, the cost is defined as
the update frequency, since the computational cost is higher
for more frequent updates. The access frequency indicates the
benefit of updating O;. To quantify the cost-benefit relation,
the access update ratio (AUR) for O;, which represents the
importance of being fresh, is defined:

access frequencyli]

AUR[i] = update frequencyli] v

Since temporal data are updated periodically, their update
frequencies are already known.

“If a certain data item is accessed by Tj, the corresponding bit in R; is set
to 1.



In this paper, we use the future access frequency of each
temporal data found during real-time query aggregation to
update AU R[i] for O; € D where D is the set of all temporal
data in the RTDB. Thus, the AUR reflects the data access
pattern that may vary in time before an actual change happens
unlike [9], which predicts the future AUR purely based on the
recent history.

In our approach, O; is considered hot, if AUR[i{] > 1.
This means the benefit of periodically updating O; is worth
the computational cost represented by the update frequency.
Otherwise, it is considered cold. In this paper, D. and Dy,
represent the sets of cold and hot data, respectively. Clearly,
D = D.UDy, and D.N Dy, = (. Also, |D.| > | Dy, if there is
a data access skew. Note that each data item is automatically
classified as hot or cold by our approach without requiring any
involvement of a DBA or any other user.

Algorithm 2: Adaptive QoD Management

input : D., «, o specified by a DBA
if t mod Pgo,p == 0 then
1 =0;
while i < |D.| do
inew = (L+0) X Py
if P, . <axPF_, then
| Pi=Pi,,.,;
1++;

In this paper, Algorithm 2 is executed at every quality of
data (QoD) adaptation period, Pg,p, to gracefully adapt the
update workload considering the current and near-future data
access pattern. In Algorithm 2, P; . is the update period of
O, before any QoD adaptation. If O; € D., the current update
period P; is increased to (1+0)P; in a QoD adaptation period,
if (1+0)P; <aP;,, where o is a parameter used to avoid
an abrupt QoD degradation. For example, when ¢ = 10%,
P, .., = 1.1 x P; after a QoD degradation for O;. In addition,
a (> 1) is provided to avoid unbounded QoD degradation.
For instance, P; < 4P; . if o = 4. Using our approach, a
DBA aware of the data needs in a specific RTDB application
can set o and a.

To maintain the freshness of a sensor data item after a
possible QoD degradation, we use the flexible validity interval
(fvi), similar to [9]. Initially, fvi = avi for all data. If
the update period P; for a less critical data object O; is
increased to P; ., we set fvinew(0;) = 2 x P, to
maintain the freshness of O; by updating it at every P, _, .
Also, O; is considered fresh if (current time — timestamp(O;))
< fUZnew(Oz)

The current QoD in terms of freshness is defined in the
RTDB with N temporal data objects:

1777,17:

p=10 Z @

lnew

Also, the QoD lower bound in a specific RTDB application
is:

QODLB =100 x |:(1 - ﬂ) + 5] (%) 3)
where 8 = |D.|/|D|. Thus, QoD > QoDpp at any time
t > 0. For example, a DBA can specify that 3 = 0.4 such
that the QoD of the coldest 40% of the data in the RTDB is
allowed to be adapted. For instance, when o« = 4 and 5 = 0.4,
QoD = 70%. In total, the DBA needs to specify only three
parameters for bounded and graceful QoD adaptation: «, (3,
and o.

The time complexity of one QoD degradation for O; € D,
is O(1). Hence, the total time complexity of QoD adaptation
using Algorithm 2 per adaptation period is O(|D.|) = O(N).

C. Race-to-Idle in RTDBs

In this section, we reduce the RTDB power consumption
via DPM using idle intervals extended by the real-time query
aggregation and adaptive freshness management schemes.

TABLE I
C-STATES USED IN THIS PAPER (SOURCE: [23])

State (C) | Power (P;) | Latency (6;) | Energy ()
CO (Run) 1W 0 0

C1 (Standby) 05 W 0.1 ms 0.025 mJ
C2 (Dormant) 0.1 W 2 ms 0.9 mJ

C3 (Shutdown) | 0.00001 W 10 ms 5 mJ

For RTDB power management, we consider the advanced
configuration and power interface (ACPI) standard that is
widely adopted. In ACPI, P states are performance states.
PO supports the highest frequency and voltage. A higher
numbered P state spends less power, but provides a lower com-
putational speed due to the reduced frequency and voltage. In
contrast, C states are idle states. In the CO state (active mode),
the processor executes instructions normally. No instruction is
executed in a low-power state or during a state transition. A
transition between the CO state and C1 state takes relatively
negligible time and energy. More power is saved in a higher
C state; however, the state transition takes more time and
energy as shown in Table I. The table is adopted from a novel
work on energy-efficient real-time scheduling [23], which has
derived the low-power state model summarized in the table by
analyzing the ARM Cortex-A family processors and FreeScale
Power architecture. In the table, the instantaneous energy
(power) consumption P; in the state C; where j > 0 is
normalized to that in the CO state. The transition latency of
Cj is: §; = do—; + 6j—0 Where Jg_,; is the state transition
latency from CO to C; and §;_,¢ is that from C; to CO. Also,
the energy overhead for C; is: E; = Eo_,; + E;_,0 where
Ey_,; indicates the energy consumed to switch from CO to
Cj and E;_, is the energy spent to shift back from C'; to CO.
In this paper, we assume that the break-even time B; = d; for
a low-power state j; that is, an idle interval must be at least
as long as 9; to effectively exploit C; [23], [12].



Algorithm 3: RTDB Dynamic Power Management

1 while frue do
2 if busy at time t then

3 L Process transactions at the highest speed;
4 else
5 7(t) = release time of the next earliest update —
t;
6 /(i) = estimated length of the i*" idle interval;
. (i) = min(n(t), ¥’ (i));
8 for ) =1;5 < N.g;j++ do
Fi s < (i
9 t ind 1313})\(/65{;@5] </L(i)}
10 if 0 < j < N, then
1 Switch to the C; state;
12 while idle do
13 L Stay in the C; state;

14 Compute ¢’ (i + 1);
15 Switch to the PO state;

In Algorithm 3, our DPM approach performed by PM (Fig-
ure 1) in a platform with N.; C-states is summarized. In our
approach, the RTDB processes update and user transactions
in the PO state to process them as fast as possible using the
highest voltage and frequency.

If the RTDB has no update or user transaction to execute
at time ¢, our DPM scheme computes 7(t) = minl_, (ry —t)
where 7, is the release time of the next periodic instance of the
update task k that periodically updates temporal data object
Oy. Thus, n(t) is found in O(N).

At time ¢, we also estimate the expected length of the i'"
idle interval since the RTDB system initialization due to no
user transaction arrival. To this end, we use an exponentially
weighted moving average (EWMA), which is effective to
smooth out short-term fluctuations of the trend in a time
series [26] (e.g., the lengths of idle intervals observed in time)
and subject to much less overheads than machine learning
techniques (e.g., [27]) are:

Pi)=axy'(i-1)+1-a)xp(i-1) 4)

where ¢’(i — 1) and (¢ — 1) are the previous smoothed idle
interval length estimate and the actual length of the most recent
idle interval, respectively. In Eq 4, a is the forgetting factor
(0 < a < 1). For example, a DBA can set a = 0.6 to ensure
that the impact of ¥ (i — 1) is 1% on the smoothed value after
5 idle intervals by recursively solving Eq 4.

The expected length of the i*" idle interval is then:

£(i) = min(n(t), ¢' (i) 5

If the RTDB has no update or user transaction to execute

at time ¢, Algorithm 3 finds | Jnax {kdé; < £(3)} where K
<J<UNes

(> 1) is a headroom constant used to compensate for possible
errors in estimating ¢’(7) and the overhead of executing

Algorithm 3.° The CPU then switches to the C; state that is
the estimated deepest low-power state to save power without
increasing deadline misses. Since there are a constant number
of the C states in a processor, the selection of C; takes O(1)
time.

When the transition to C; completes at time ¢;,(> t), the
actual idle interval begins. The system stays in the C; state
as long as it is idle. If there is an imminent periodic update
job release or a new user transaction arrival at time ¢ (> t3),
our approach switches back to the PO state. Thus, the actual
length of the i idle interval that excludes any state transition
latency is: ¢ (i) = ty —t;. Algorithm 3 derives ¢)'(:+1) using
Eq 4 based on /(i) and (). Using 9’ (i+1), Algorithm 3 is
re-executed when the system becomes idle again in the future.

In this paper, if ¥(i) < 0; (= Bj), we consider that an
estimation error has occurred and normalize it to §;:

6; —(1))/6; if (i) < 6;
6(2) — ( J 1/’(1))/ J 1 w(l) 7 (6)
0 otherwise
To measure the estimation accuracy, we define the estimation
error ratio:

P, =100 x N./Nay (%) @)

where N, and N,;; represent the total number of the occurred
estimation errors and that of all the state transitions to one
of the low-power states, respectively. Also, we measure the
average size of the normalized estimation errors:

Ne

M, =100 x Y _e(i)/N, (%) (8)

i=1

Note that no estimation error occurs due to periodic updates,
because the periods of temporal data updates in the RTDB are
known a priori. In Section V, Table I, Eq 7, and Eq 8 are
used for performance evaluation.

The time complexity of Algorithm 3 is O(/V). Thus, the
total time complexity of our approach, which consists of the
real-time query aggregation, freshness adaptation, and DPM
techniques described in Algorithms 1 — 3, is O(V). It is linear
in terms of the number of the temporal data in the RTDB
but independent of the number of real-time queries. Thus, our
approach is applicable to different RTDB applications with
various user transaction arrival rates and data access patterns.

V. PERFORMANCE EVALUATION
In this section, the performance of our approach and base-

lines is thoroughly compared.

A. Simulation Set-Up and Baselines

In this subsection, the simulation model and experimental
settings for performance evaluation are discussed. Also, the
baselines designed for performance comparisons are described.



TABLE II
SIMULATION SETTINGS FOR DATA AND UPDATES

Parameter

#Data Objects
Update Period
EET;

Update Load

[ Value

1000
Uniform[100ms, 50s]
Uniform[3ms, 6ms]
~ 50%

1) Simulation Model: Our simulation settings summarized
in Tables II and III are similar to the ones used in other RTDB
research modeled after data-intensive real-time applications,
e.g., air traffic control, fire detection, and engine diagnosis
[10], [111, [2], [4].

Our simulation settings for temporal data updates are sum-
marized in Table II. As shown in the table, there are 1000
temporal data objects in our (simulated) RTDB. Each data
object O; (1 < i < 1000) is periodically updated by an
update stream Stream,; associated with an estimated execution
time EET; and an update period P;. EET; is uniformly
distributed in a range [3ms, 6ms]. When a periodic update
job is generated, the actual update execution time is derived
by applying a normal distribution Normal(EET;,/EET;)
to Stream; to model potential update time variations.

When no freshness adaptation is performed, the total up-
date workload requires approximately 50% CPU utilization.
Also, higher priority is given to updates to maintain the data
freshness. Thus, all deadlines of update transactions are met.
In the rest of this paper, we only consider the miss ratio of
user transactions.

The total load applied to the RTDB is 50% + user trans-
action load. In this paper, total loads 60%, 70% 80%, 90%,
100%, 110%, and 120% are applied to evaluate the deadline
miss ratio and power consumption of our approach and the
baselines for different workloads.

TABLE III
SIMULATION SETTINGS FOR USER TRANSACTIONS
Parameter [ Value
EET; Uniform[bms, 20ms]
Actual Exec. Time Normal|EET;,/EET;)
Npara, FEFET; x Data Access Factor
=[5, 20]
#Actual Data Accesses | Normal(Npara,,/Npara,)
Slack Factor [10, 20]

Table III summarizes the simulation set-up for user trans-
actions. In this paper, a source, Source;, generates a series
of real-time user transactions whose inter-arrival time is dis-
tributed exponentially. Source; is associated with EET;. In
this paper, FET; = Uniform[5ms,20ms]. Using multiple
sources, we statistically generate transaction groups with dif-
ferent average execution times and numbers of data accesses.

5Generally, a large x value provides a lower miss ratio for saving less
power or vice versa. In Section V, k = 1.5.

To increase the workload applied to the RTDB, we increase the
number of sources. As a result, more user transactions arrive
per unit time. When a user transaction is generated, the actual
execution time is generated by applying the normal distribution
Normal(EET;,«/EET;) to introduce the execution time
variance in a series of user transactions produced by Source;.

We derive the average number of data accesses for
Source; in proportion to EFET;; that is, Npara, =
data access factor x EET; = [5,20]. Thus, a longer
transaction generally accesses more data. When gener-
ating a user transaction, the actual number of data
accesses of the transaction is determined by apply-
ing Normal(Npara,,/Npara,) to introduce a variance
among the user transactions generated by Source;.

For a user transaction, deadline = arrival time + estimated
execution time X slack factor in this paper. A slack factor
is uniformly distributed in a range (10, 20). For an update,
deadline = next update period.

2) Baselines: In this paper, we simulate the RTDB system
architecture depicted in Figure 1. The system components for
real-time query aggregation, freshness adaptation, and power
saving can be selectively turned on/off for performance evalu-
ation purposes. Database query aggregation for energy saving
typically requires to delay queries [8], incurring deadline
misses as discussed before. Also, most existing RTDB power
management schemes [2], [3] rely on the never-idle paradigm
that requires complex trade-offs between performance and
power conservation. Therefore, we consider the following
baselines that represent the current state-of-the-art RTDBs
and extend existing database power management schemes for
insightful performance comparisons:

e Power-Unaware RTDB (PU-RTDB): In this baseline,
EDF scheduling and 2PL-HP are supported to process
real-time transactions. Update transactions are assigned
higher priority than user transactions as discussed in
Section III. Our approach and all the baselines apply
the same scheduling and concurrency control techniques
for fair performance comparisons. However, no query
aggregation, freshness adaptation, or power saving is
considered, similar to most existing RTDBs. Thus, this
baseline represents state-of-the-art RTDBs.

o Query Aggregation (QA): In this baseline, we extend the
non-RTDB query aggregation scheme presented in [8]
by supporting our real-time query aggregation scheme
(Section I'V-A) to avoid excessive deadline misses. In fact,
we have directly applied the query aggregation technique
presented in [8] without this extension. We have observed
more than 90% of user transactions miss their deadlines
even when the total workload is only 60% and user
transactions are delayed only until the length of the EDF
queue becomes 5. Thus, we use QA instead of [8] for
performance comparisons.

o Freshness Adaptation (FA): This baseline extends the
adaptive QoD management scheme [9] that is power-
unaware as discussed in Section IV-B. In [3], QoD
adaptation is applied to reduce the power consumption for



running a single real-time user transaction. FA extends [3]
in the sense that it supports multiple concurrent real-time
user transactions. Further, FA supports the race-to-idle
method via DPM instead of DVFS used in [3].

One may argue that QA and FA are just variations of
our approach, QA-FA. However, QA and FA considerably
extend the state-of-the-art techniques for power-aware RTDBs.
Without those extensions, the baselines show relatively poor
performance in terms of the miss ratio and power consumption.

TABLE IV

QUERY AGGREGATION AND QOD ADAPTATION PARAMETERS
Parameter | Description [ Value
P(QA) P(query aggregation) 0.05, 0.1, ..., 0.3
o P; < aP;min 4
B |D.|/|D| 0.1,0.2, .., 0.5
o size of a QoD adaptation | 10%
Pgop QoD adaptation period Ss

In Table IV, the parameters for query aggregation and QoD
adaptation are summarized. In this section, QAxz indicates
QA with query aggregation probability of xx%. For example,
two arbitrary queries can be merged into one query with 5%
probability in QAOS. For performance evaluation, the query
aggregation probabilities 5%, 10%, ..., 30% are used as sum-
marized in Table IV. Data access skews and queries may vary
from RTDB application to application. Rather than considering
the semantics or requirements of a specific application, the
query aggregation probabilities ranging from conservative to
moderate values are used for RTDB performance evaluation.

In a similar vein, FAyy indicates that freshness adaptation
is allowed for yy% of the temporal data objects in the RTDB
where yy = 100 x 8 % that indicates the fraction of temporal
data whose QoD can be adapted. For performance evaluation,
we consider yy = 10%, 20%, ..., 50% to consider potentially
different QoD requirements in different RTDB applications as
summarized in Table IV. Also, we set « =4 and o = 10% for
bounded, stepwise QoD adaptation.

Our approach that integrates QAzx and FAyy is indicated
by QAzz-FAyy. In this paper, the same workloads and ex-
perimental settings are used for fair performance comparisons
between the baselines and our approach. Each experimental
run takes 10 minutes. Each performance result is the average
of 20 runs with 95% confidence intervals.

B. Performance Evaluation Results

1) Experiment Set 1 — Impacts of Query Aggregation :
Figure 2 compares the deadline miss ratio of PU-RTDB and
QA with different P(QA) values in Table IV. It also shows
the power saving achieved by QA against PU-RTDB. PU-
RTDB and QA provide 100% QoD, since they do not consider
freshness adaptation.

In Figure 2(a), the miss ratio of the PU-RTDB ranges
between 0.33 + 0.3% — 39.71 + 1.97% as the load is in-
creased from 60% to 120%. QAO05’s miss ratio ranges between
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Fig. 2. Deadline Miss Ratio and Power Conservation in Experiment Set 1

0.09+0.08% — 27.44 + 2.54%. Thus, compared to PU-RTDB,
QAO5 reduces the miss ratio by up to approximately 12%
when 120% load is applied to the RTDB. Although P(QA) is
only 5%, it becomes more effective in terms of reducing the
miss ratio when the load increases and more user transactions
are merged as a result.

As shown in Figure 2(a), QA30 supports the lowest miss
ratio among the tested approaches. Its miss ratio is below
4% even when the load is 120%; it decreases the miss ratio
by nearly 36% compared to PU-RTDB. Although the miss
ratio generally grows as the load increases, the growth rate
is decreased substantially, if more real-time query aggregation
is possible. Note that the miss ratio of the tested approaches
is non-zero even when the total load is much below 100%,
since some transactions may get aborted and restarted due
to data/resource conflicts. This indicates the difficulty of
processing real-time transactions in RTDBs.

QA considerably decreases the power consumption espe-
cially when the load is relatively low as shown in Figure 2(b).
The achieved power saving generally decreases as the load
increases, because the RTDB should run at the highest speed
longer to process more real-time transactions as the load
increases. By aggregating real-time queries, it reduces the
workload and switches to the low-power mode when the
RTDB becomes idle. By doing this, compared to PU-RTDB,
QAO05 and QA30 decrease the total dynamic power consump-
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Fig. 3. Deadline Miss Ratio and Power Conservation in Experiment Set 2

tion by 0.84% — 34.58% and 6.95% — 36.78%, respectively.
Being power-unaware, PU-RTDB cannot decrease the power
consumption even when the system is underutilized.

The results in this set of experiments demonstrate that
QA is effective in terms of managing the timeliness and
power consumption in RTDBs, if it is done without artificially
delaying real-time transactions, incurring little overhead. We
have measured the CPU utilization for the tested approaches.
Compared to PU-RTDB, QAO05 and QA30 reduce the utiliza-
tion by up to 3% and 15%, respectively. We also observe
QA’s accuracy in estimating the next idle interval length is
acceptable. A more detailed discussion of the utilization and
estimation accuracy for Experiment Sets 1 — 3 is given in
Appendix A due to space limitations.

2) Experiment Set 2 — Impacts of Freshness Adaptation :
In Figure 3(a), the miss ratio of PU-RTDB ranges between
0.33 £ 0.3% — 39.71 + 1.97% as the load is increased from
60% to 120%.° The miss ratio of FA10 ranges between
0.12 4+ 0.071% — 33.65 & 2.03% as shown in Figure 3(a).
Compared to PU-RTDB, FA10 reduces the miss ratio by up
to approximately 6%.

FAS50 supports the lowest miss ratio among the tested
approaches. Its miss ratio in Figure 3(a) ranges between

%The miss ratio, power consumption, and utilization results of PU-RTDB
are the same as the ones reported in the Experiment Set 1. They are plotted
again in Figure 2 just for easier comparisons.

0.05 £+ 0.02% — 11.36 + 1.51%, decreasing the miss ratio by
up to roughly 28% compared to PU-RTDB. Although the miss
ratio grows as the load increases, data freshness adaptation
considerably decreases the growth rate. In our approach, the
required freshness is always supported for each temporal data
item O; in terms of fvi[i] (or avi[i]) if O; € D, (or O; € Dy,).
In Experiment Sets 2 and 3, the QoD supported by FA and
QA-FA is slightly higher than the required QoD lower bounds
because of our periodic QoD adaptation that is bounded and
gradual. Due to space limitations, a more detailed discussion
of the QoD lower bounds and measured QoD is given in
Appendix B.

From Figures 2(a) and 3(a), we observe that QA is more
effective than FA is in terms of reducing the miss ratio
especially when the load is relatively high. This is because the
total update workload is no more than 50% in our simulation
set-up, whereas the user transaction load increases from 10%
to 70% as the total load increases from 60% to 120%. Thus,
QA has more opportunities to aggregate real-time queries as
the load increases. Generally, the update load is predetermined
in RTDBs; however, user transactions may arrive at any time
[6].

From Figures 2(b) and 3(b), we also observe that QA saves
more power than FA does when the load is relatively high and
vice versa. In general, QA is relatively more desirable in that
it does not adapt any quality of service, e.g., QoD, provided by
RTDBs to decrease the miss ratio and power consumption. FA,
however, is effective too, since it is highly likely that different
data have different popularity or importance. Thus, they are
complementary and may create synergistic effects, which we
evaluate next.

3) Experiment Set 3 — Impacts of Integrated Query Aggre-
gation and QoD Adaptation: As shown in Figure 4, QAO05-
FA10 that allows minimal real-time query aggregation and
freshness adaptation already decreases the miss ratio and
power consumption by up to approximately 18% and 37%
compared to PU-RTDB.

The highest miss ratio of QA15-FA30, which supports mod-
erate query merging and freshness adaptation, is 4.64 +0.88%
for the 120% load. Compared to PU-RTDB, it decreases the
miss ratio by approximately 34% when the load is 120%. The
miss ratio of QA15-FA30 for 120% load is approximately 2%
higher than that of QA30 (Figure 2(b)) and 6% lower than
that of FAS50 (Figure 3(b)). Also, for 120% load, QA15-FA30
saves roughly 1% less and 2.5% more power than QA30 and
FA50 do.

Therefore, the miss ratio and power reductions of QA15-
FA30 are comparable to those of QA30 and FAS50, which
support the highest degree of real-time query aggregation and
freshness adaptation in our experiments. This is because QA
and FA together decrease both user and update transaction
workloads, mitigating the conflicts among the timeliness,
freshness, and power saving requirements as discussed in
Section I.

The miss ratio of QA30-FA50 is below 0.05% for all the
tested RTDB workloads. Thus, the miss ratio of QA30-FAS50 is
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Fig. 4. Deadline Miss Ratio and Power Conservation in Experiment Set 3

invisible in Figure 4(a). Compared to PU-RTDB, it decreases
the power consumption by approximately 19% — 52% as
plotted in Figure 4(b).

VI. CONCLUSIONS AND FUTURE WORK

It is desirable yet challenging to process real-time transac-
tions in a timely manner using fresh data, while consuming
less power in real-time databases. In this paper, we present
an effective approaches for real-time query aggregation and
adaptive data freshness management to decrease both deadline
misses and power consumptions in RTDBs. The miss ratio and
power consumption of our approach are thoroughly compared
to those of the baselines that represent and improve state-of-
the-art RTDBs. Our approach decreases the deadline miss ratio
and power consumption by up to approximately 38% and 52%,
respectively. Also, we observe that our approaches comple-
ment each other in terms of decreasing the user transaction
and temporal data update workloads to decrease the deadline
miss ratio and power spending. Finally, future research issues
are discussed in Appendix C.
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A. Utilization Measurements and Idle Length Estimation Er-
rors

In Experiment Set 1, the utilization of the PU-RTDB ranges
between 59.49% — 99.23% for the 60% — 120% loads. In
Figure 5(a), QA05 and QA30 reduce the utilization by up to
3% and 15% compared to PU-RTDB. Notably, the magnitude
of power saving by QA0S and QA30 in Figure 2(b) is bigger
than that of the utilization decrease, because QA or FA
switches to a low-power state when the RTDB is idle.

In Experiment Set 1, the estimation error ratio P, (Eq 7)
ranges between 0.25 £ 0.03% — 2.04 + 0.05%. Our estimation

accuracy is high in terms of P, because: 1) the EWMA is
effective to track the trend in a time series [26] and 2) the
periods of temporal data updates used together with ’(4)
in Eq 5 are known in advance. Although M. (Eq 8) ranges
between 2.5 + 0.46% and 10.39 + 0.49%, it has little impact
on the miss ratio and power consumption because: 1) P, is
low, 2) a 10% estimation error is much smaller than the user
transaction execution times and relative deadlines, and 3) the
CPU spends only a small amount of time in the C3 state due to
03 that is 100 and 5 times longer than §; and Jo, respectively.
More specifically, a 10% estimation error is equal to 0.01ms,
0.2ms, and 1ms with respect to d1, d2, and &3 in Table I. On the
other hand, the user transaction execution times and deadlines
range between [Sms, 20ms] and [50ms, 400ms], respectively
(Table III). Also, when P(QA) = 0.3 that provides the highest
chance for query aggregation among the tested P(QA) values,
the CPU spends only 1.1% and 0.04% of the time in the C3
state for the 60% and 120% loads, respectively. In particular,
for the 60% load, QA30 spends approximately 64.2%, 3.34%,
31.35%, and 1.1% of the time in the CO, C1, C2, and C3
states, respectively. When the load is 120%, it spends 93.09%,
1.34%, 5.52%, and 0.04% of the time in the CO, C1, C2, and
C3 states, respectively. In Experiment Sets 1 — 3, we observe
that the amount of the time spent by QA, FA, and QA-FA in
the C-states generally decreases in C0O, C2, C1, and C3 order.

In Experiment Set 2, FA decreases the utilization by
3% — 17% compared to the PU-RTDB as shown in Fig-
ure 5(b). For the tested workloads, P, and M, range between
0.054+0.01%—2.14+0.07% and 2.46+0.48%—12.08+0.64%,
respectively. In FA50, which supports the largest QoD adap-
tation, the processor spends 4.95% and 0.09% of the time in
the C3 state for the 60% and 120% loads, respectively. FA
decreases the utilization more for the relatively low loads,
because fewer user transactions access temporal data. As
a result, more data become cold and subject to freshness
adaptation. Thus, it spends more time in the C3 state than
QA did in Experiment Set 1 especially when the load is low.

In Experiment Set 3, compared to PU-RTDB, QA05-FA10,
QA15-FA30, and QA30-FA50 in Figure 5(c) decrease the
utilization by up to approximately 6%, 17%, and 29%, re-
spectively. Due to the effective cooperation between QA and
FA, QA-FA decreases the utilization more substantially than
QA or FA does separately. P, ranges between 0.1140.01% —
2.34+0.04% and M, between 2.75+0.59% — 11.74 +0.45%,
similar to Experiment Sets 1 and 2. QA-FA spends the largest
amount of time in the C3 state among the tested approaches
by doing both query aggregation and freshness adaptation. In
particular, QA30-FA50 spends 5.49% and 0.6% of the time in
the C3 state for the 60% and 120% loads, respectively.

B. QoD Measurements

In our performance evaluation, &« = 4 and o = 10% as
described in Section V. In addition, different values of /3
= |D.|/|D| = 0.1, 0.2, ..., 0.5, are used. The lower bounds
of the QoD for different 8 values computed using Eq 3 are
summarized in Table V.



TABLE V

QoD LOWER BOUNDS WHEN o = 4
Jéi | QoD Lower Bound
0.1 (FA10) | 92.5%

0.2 (FA20) | 85%

0.3 (FA30) | 77.5%

0.4 (FA40) | 70%

0.5 (FA50) | 62.5%
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Figure 6 shows the QoD measured in the Experiment Set
2. (The confidence intervals are invisible in Figure 6 for their
small sizes.) As shown in the figure, FA always supports the
QoD requirements. More specifically, it supports a bit higher
QoD than the QoD lower bounds summarized in Table V.
This is because the freshness is only adapted by increasing
the periods of the data in the set D, by o = 10% at each QoD
adaptation, which is performed every Ss in our performance
evaluation. In Experiment Set 3, we have observed similar
QoD results in QA-FA, since the same QoD parameters are
used for performance evaluation. In contrast, PU-RTDB and
QA always support 100% QoD, since they do not consider
adaptive freshness management as discussed previously.

C. Future Work Discussions

There are several possible directions for future research
on power-aware RTDBs, which has received relatively little
attention despite the importance:

« Enhancing the accuracy in estimating the next idle inter-
val is a key issue for DPM in RTDBs. Machine learning
techniques could be applied to enhance the accuracy.
However, they are relatively heavy in terms of com-
putation. Moreover, a supervised learning method may
perform poorly when the training set used to develop a
model does not represent unforeseen idle interval lengths,
which may vary in time, well. On the other hand, an
unsupervised learning algorithm may take a long time or
even fail to derive (learn) unknown parameters necessary
for a prediction. In general, the applicability of machine

learning to timeliness and power management in RTDBs
is largely unknown.

o Effective real-time query optimization, transaction
scheduling, and concurrency control techniques may
considerably reduce potential data/resource contention
and corresponding transaction aborts/restarts. As a
result, the deadline miss ratio and power consumption
of RTDBs can be decreased. Although transaction
scheduling and concurrency control in RTDBs have
been studied extensively [6], most existing techniques
do not consider power/energy consumptions. It might
be possible to adapt/modify them to support power
conservation as well. Or, it might be necessary to
explore fundamentally different approaches.

e More power could be saved by applying other power
management techniques supported by hardware, e.g.,
DVFS, together with DPM. A related challenge is how
to avoid increasing deadline misses or losing opportuni-
ties for DPM due to slower real-time query processing
caused by the never-idle method. A promising approach
could be investigating a hybrid method that seamlessly
integrates the never-idle and race-to-idle techniques, e.g.,
DVES and DPM, to further decrease the miss ratio and
power consumption in RTDBs with little complexity and
overhead.

o Multicore processors could be both a blessing and a
curse for power-aware RTDBs. At first glance, one may
think more transactions/queries could be processed con-
currently using multiple cores. However, a naive approach
may suffer from severe contention for shared data and
resources, €.g., the system bus and memory controllers,
among the cores. As a result, it might increase deadline
misses or power consumptions in reality. It is largely un-
known how to design power-aware RTDBs for multicore
platforms. For example, our real-time query aggregation
scheme could help the RTDB reduce data/resource con-
tention. However, a difficult problem of assigning real-
time transactions/queries to the cores to minimize the
data/resource contention, deadline miss ratio, and power
consumption remains open.

Note that this list is neither exhaustive nor complete; there
could be other important issues not discussed here. However,
a key lesson we learned from this work is that it is possible
to reduce both deadline misses and power consumptions in
RTDBs, while supporting the desired QoD. This approach
could be extended to further enhance the timeliness and
power efficiency of RTDBs by exploring more effective real-
time query optimization, transaction scheduling, concurrency
control, and RTDB system design techniques that consider
inherent RTDB characteristics, real-time data semantics, or
advanced hardware features.

ACKNOWLEDGMENT

We appreciate anonymous reviewers for their help to improve
the paper. This work was supported, in part, by NSF grant
CNS-1526932.



