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Abstract

Multimedia applications with soft real-time con-
straints consume considerable power, incurring ther-
mal problems. It is challenging to process multime-
dia data in real-time with the highest possible QoS,
while avoiding potential thermal problems. To aggra-
vate the problem, immediate dissipation of the accu-
mulated heat is infeasible. In this paper, we design
an empirical model to predict the power consumption
and resulting processor temperature for video decoding.
Based on the model, we develop a predictive method
that avoids deadline misses due to thermal faults by
adapting the video quality before the temperature ex-
ceeds the specified threshold. We implement our pre-
dictive control scheme and two baseline approaches by
extending an open source implementation of the H.264
scalable video coding standard. Our approach controls
the temperature to be below the specified threshold for
most of the time unlike the tested baselines, while sup-
porting similar or even better video quality.

1 Introduction

Important soft real-time applications, such as visual
surveillance, traffic control, or gaming, need to deal
with computationally demanding multimedia work-
loads, such as high definition (HD) video frames. As
a result, the processor is subject to high power con-
sumption and overheating when it runs a soft real-time
multimedia application. If the CPU gets overheated,
many multimedia deadlines (e.g., playtime deadlines of
an HD video stream) can be missed due to hardware-
triggered processor speed reductions, such as clock
throttling for thermal control available in modern pro-
cessors unaware of real-time constraints.

In this paper, we define thermal faults as any over-
heating events in which the CPU chip temperature ex-
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ceeds the specified threshold, incurring potential dead-
line misses due to hardware-triggered CPU speed re-
ductions. Given the definition, we investigate how to
avoid CPU thermal faults subject to deadline misses
in a predictive fashion, while supporting the highest
possible HD video quality.

To handle thermal issues in real-time systems, reac-
tive thermal management techniques, including [25, 3,
14, 9], have been developed. In reactive methods, the
processor speed is usually reduced via, for example, dy-
namic voltage and frequency scaling (DVFS) once the
temperature reaches or exceeds the threshold. Unfor-
tunately, in reactive methods, users may suffer from
many deadline misses and resulting quality of service
(QoS) degradation due to the reduced processor speed.
If the multimedia quality is adapted to match the de-
creased processor speed in a reactive manner, users
may experience poor QoS for a long interval of time,
since the accumulated heat cannot be dissipated im-
mediately. Recently, QoS adaptation techniques have
been applied to decrease the energy consumption of
multimedia applications [15, 12]. However, relatively
little work has been done to support predictive CPU
temperature control that systematically adapts the HD
video quality by a minimal degree to prevent thermal
faults potentially causing deadline misses rather than
relying on ad hoc approaches to QoS adaptation.

It is challenging to prevent the CPU from overheat-
ing and simultaneously support as high video quality
as possible under the temperature constraint because
of the high computational demand and dynamic work-
loads in real-time multimedia applications. For exam-
ple, the complexity of the scenes in an HD video stream
may vary from frame to frame and may not be known
a priori. To address the challenge, we propose a sys-
tematic and cost-effective approach in this paper:
• We design a new empirical model that predicts the

CPU temperature by directly considering the CPU
thermal characteristics and multimedia application
semantics.

• We periodically update the model at each control
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point to capture the potentially time-varying relation
between the provided video quality and the predicted
CPU power consumption and temperature. Thus,
our thermal control scheme is an adaptive feedfor-
ward controller consisting of both feedforward and
feedback components.

• Using the predictive model, we adapt the video qual-
ity by a minimal degree within a specified range at
each control point, if necessary, to avoid overheating
the CPU in the next sampling period.
Via predictive video quality adaptation at each con-

trol point, our approach intends to avoid violating the
specified temperature threshold in a predictive fashion,
while supporting as high overall quality as possible un-
der the temperature constraint.

Our approach can be considered a mirror image of
feedback-based approaches in that we take an action
at a control point, if necessary, to prevent overheat
over the prediction horizon rather than reacting to
a thermal error observed in the previous control pe-
riod.1 The notions of the online system modeling, pre-
dictive control, and minimal QoS adaptation of our
approach are conceptually similar to model predictive
control [16]. However, in model predictive control, the
controlled system behavior is usually modeled via on-
line black-box modeling based on the recursive least
square method. In this paper, we instead perform
white-box modeling that directly considers real-time
multimedia workload and CPU thermal characteristics.
More specifically, we derive and update our predictive
model online based on the inherent relationship be-
tween the video quality and the resulting CPU cycle
and power consumption, which result in temperature
changes, rather than relying on blackbox modeling.

To manage the CPU temperature via predictive
video quality adaptation, we use H.264 scalable video
coding (H.264/SVC) jointly standardized by ISO/IEC
MPEG and ITU-T VCEG [21]. Notably, the term “scal-
ability” in SVC means the potential partial removal of
the video bit stream for QoS adaptation. SVC sup-
ports temporal, spatial, and quality scaling that adapt
the frame rate, spatial resolution, and quantization pa-
rameter (QP) affecting the peak signal to noise ratio
(PSNR), respectively. In this paper, we adapt the video
quality, if necessary, to avoid overheating the CPU in
the next control period via quality scaling, which nor-
mally provides less disturbing visual effects than spatial
or temporal scaling does [21]. Thus, the provided QP
for HD video decoding is the QoS metric used in this

1In our approach, the length of the prediction horizon is 1 in
that we adapt the video quality, if necessary, to prevent thermal
faults in the next control period, similar to one-step look-ahead
control [1].

paper.
In this paper, we extend the JSVM (Joint Scalable

Video Model) software [13], which is a reference im-
plementation of the H.264/SVC standard [21], to im-
plement our predictive CPU temperature management
scheme and two baselines: a static approach and a re-
active feedback controller that uses a fixed QP and dy-
namically adapts the QP based on formal control the-
ory [17], respectively. We compare the CPU temper-
ature and supported video quality of our approach to
those of the baselines. The experimental results show
that the temperature of the feedback-based baseline,
which shows considerably better performance than the
static baseline does, exceeds the threshold by 5◦C −
9.4◦C (9% − 17%) for 270 or more seconds out of the
10 minute experiment for the tested videos. In our ap-
proach, the temperature exceeds the threshold by no
more than 0.4◦C (0.007%). Also, a temperature over-
shoot exceeding the threshold has lasted for no more
than 11s out of 10 minutes. The video quality sup-
ported by our approach is similar to or slightly better
than the quality provided by the baselines for most
of the time. Since our approach dynamically adapts
the video quality in a predictive manner, it can avoid
overheating the CPU. As a result, it can also avoid po-
tentially severe QoS degradation due to the overheat
for an extended time interval. In our user experience
study, none of the participating users has noticed vis-
ible quality degradation due to potential QoS adapta-
tion via our predictive thermal control scheme. Fur-
ther, our approach is lightweight. According to our
measurements, it consumes less than 3% CPU utiliza-
tion.

The rest of the paper is organized as follows.
Background information about H.264/SVC is given in
Section 2. Our predictive temperature management
scheme is described in Section 3. Section 4 presents
the performance evaluation results. Related work is
discussed in Section 5. Finally, Section 6 concludes the
paper and discusses future work.

2 Overview of the H.264/SVC Stan-
dard

In this section, an overview of H.264/SVC that
extends H.264 advanced video coding (H.264/AVC),
which is one of the most common formats used to
record, compress, and distribute HD videos, to support
scalable video coding.

Traditional digital video coding, transmission, and
storage techniques, e.g., standard-definition television
(SDTV), high-definition television (HDTV), or com-
mon intermediate format (CIF), usually support a fixed
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spatial resolution and frame rate. However, fixed for-
mat videos cannot efficiently deal with diverse network
connections and devices used by end-users with consid-
erably different computational and display capabilities
[21].

Figure 1. Quality scaling: Frames decoded
using QP=16, 28, 36, and 40 are shown from
top-left to bottom-right (Best seen in colors)
The H.264/SVC standard [21] is designed to sub-

stantially enhance the coding efficiency, while increas-
ing the video scalability compared to the previous scal-
able video coding standards. In H.264/SVC, a raw
video is compressed only once to get a high quality
video stream that contains one or more subset bit-
streams. One video can be coded with a combination of
different temporal rates, spatial resolutions, and quan-
tization parameters (QPs) at the coding time. There-
fore, multiple bit-streams of the same source content,
which differ in the coded video size, frame rate, and/or
PSNR, can be serviced at the same time. Also, a de-
coder of a client with constrained resources can dy-
namically adapt the QoS by extracting and decoding
only selected partial bit-streams from the compressed
bit-stream, discarding the other unselected sub-bit-
streams that improve the quality of the video. In this
paper, we take advantage of selective video decoding
for predictive CPU temperature control.

Specifically, H.264/SVC supports three types of
scaling.
• In spatial scaling, a video is coded with several spa-

tial resolutions. The original high resolution video
is down-converted to new video streams with lower
resolutions. The final bit-stream contains the video
with all the coded resolutions. Thus, a compressed
video can be decoded at different resolutions.

• In temporal scaling, all or a part of the frames of the
original video is coded with different frame rates.
Hence, a compressed video can be transmitted or

decoded at different frame rates.
• In quality scaling, a substream provides the same

spatial and temporal resolution as the complete bit-
stream does, but supports lower fidelity. The fidelity
of an image created by a lossy codec is usually repre-
sented by the PSNR, which indicates how close a re-
constructed image is to the original (uncompressed)
image [18]. Thus, a higher PSNR value normally in-
dicates a better reconstruction of an image. A QP
is used to selectively cancel some information from
the original video. Its effect is similar to the effect
of a low-pass filter [18, 21]. As human eyes are more
sensitive to low frequencies than high frequencies,
canceling high contrasts can be done progressively
with a moderate impact on the visual perception.
Generally, a smaller QP leads to higher fidelity and
PSNR at the cost of a higher bit rate.
As shown in Figure 1, adapting the QP usually re-

sults in tolerable visual quality degradation. Although
the QP is substantially increased from 16 to 40, the
visible quality degradation is not pronounced. Usually,
quality scaling leads to less noticeable quality degra-
dation compared to spatial and temporal scaling that
decreases the video resolution/size and induces choppy
video playback due to the skipped frames, respectively
[21]. Hence, we use quality scaling as the QoS adap-
tion mechanism for thermal control with minimal QoS
degradation. However, our approach is not limited to
quality scaling. If required, it can be easily adapted to
support temporal or spatial scaling for video decoding.

In H.264/SVC, each layer of a frame (i.e., a picture)
is decoded in the following sequence [21]:

1. Initialize the slices (spatially distinct regions of a
frame encoded separately from the other regions
in the frame) and decoding parameters.

2. Parse the slices, analyze the bit-stream, and de-
code the entropy.

3. Decode the slices to reconstruct the picture.

4. Do an optional final processing using a loop filter
and subsequently display a reconstructed picture.

In this paper, we use Pc to denote the control pe-
riod. For k ≥ 0, the kth predictive control point is
equal to the time instant kPc. At the kth control point,
we estimate the decoding cost of the H.264/SVC video
frames that will be decoded in the (k + 1)th control
period, which is the time interval [kPc, (k + 1)Pc), by
performing only the first two steps to parse the slice
data (also called metadata) of the frames without ac-
tually decoding them, since the last two steps dominate
the decoding cost. Specifically, to design a lightweight
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approach to predictive thermal control for HD video
decoding, we only extract the QPs used to encode the
frames that will be decoded in the next control period
at each control point.

3 CPU Temperature Modeling and
Control

In this section, the overall system structure and our
predictive temperature control scheme are described.

3.1 Overall System Architecture
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Figure 2. System Architecture
Figure 2 shows the overall system architecture. In

our approach, the controlled variable is the CPU tem-
perature. Tmax in Figure 2 represents the specified
CPU temperature threshold. In addition, T (k) and
TA(k) represent the current chip temperature and am-
bient temperature measured at the kth control point,
respectively.

At the kth (≥ 1) control point, the cycle estimator
in Figure 2 measures the number of the CPU cycles
that have been consumed for video decoding in the kth
control period, u(k). Also, it predicts the estimated
CPU cycles required for video decoding in the (k+1)th

control period, û(k + 1).
In this paper, the QP is the manipulated variable

adapted by our temperature controller, if necessary, to
control the CPU temperature to be below Tmax. Based
on û(k + 1) and the corresponding estimated power
consumption, the smallest possible QP, QP (k + 1), is
derived by the temperature controller. QP (k + 1) will
be used to decode the frames in the (k + 1)th control
period with the highest possible quality under the tem-
perature constraint, Tmax.

The decoder in Figure 2 takes a coded SVC bit
stream and decodes it according to QP (k + 1) in the
(k + 1)th control period. When the QP is increased,
the PSNR normally decreases and the quality of the
picture, which is reconstructed by decoding the video
frame coded via lossy compression, decreases. Finally,
the player displays the decoded frames.

Further, we assume that all deadlines for video
decoding can be met using a uniprocessor real-time
scheduling algorithm, if the CPU speed is not decreased
by the hardware due to thermal faults. Thus, we focus
on preventing thermal faults that can result in deadline
misses.

3.2 Design of the Predictive Model

Our predictive temperature control scheme is sum-
marized in the pseudo code in Algorithm 1 and dis-
cussed in this subsection.

Algorithm 1 Predictive CPU Temperature Control
1. At the kth control point, update the model param-

eters.

2. At the kth control point, estimate the maximal
allowable power consumption, pmax(k + 1), in the
(k + 1)th control period without exceeding Tmax.

3. At the kth control point, based on pmax(k + 1),
compute the smallest possible QP (k+1) expected
to support the highest possible quality, while
avoiding to violate Tmax in the (k + 1)th control
period.

4. Use QP (k+1) for video decoding in the (k+1)th

control period.

5. Repeat the steps above at each control point until
all frames are decoded.

To design a predictive scheme for CPU temperature
management, we use the widely accepted RC temper-
ature model [23, 6] that captures the relation between
the CPU temperature and power consumption in the
continuous time domain as follows:

dT (t)

dt
= − 1

RC
[T (t)− TA(t)] +

1

C
p(t) (1)

where R and C represent the thermal resistance and
capacitance values of the CPU chip. T (t), TA(t), and
p(t) are the current chip temperature, ambient temper-
ature, and the amount of the power consumed by the
CPU at time t, respectively. In this paper, we assume
that the ambient temperature does not change signif-
icantly between two sampling points. Our model can
be easily extended to consider the ambient tempera-
ture for thermal control, if it can be read using, for
example, an off-chip sensor.

We discretize the continuous time domain model in
Eq. 1 to predict the CPU temperature in the (k+1)th

control period, x(k+1), at the kth control point, similar
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to [23, 6]:

x(k + 1) = Ax(k) +Bp̂(k + 1) (2)

where A = e−Pc/RC , B = (1−A)R, and x(k) = T (k)−
TA(k). In addition, p̂(k + 1) represents the predicted
power consumption for video decoding in the (k+1)th

control period.
Using the GNU intelligent platform management in-

terface (IPMI) tools [8], we measure T (k) and TA(k)
in Eq. 1 by taking on-chip temperature sensor read-
ings at the kth control point. Note that we build our
predictive thermal control model based on direct sen-
sor readings rather than using indirect indications of
the CPU temperature, such as the fan speed adjusted
by the hardware based on the CPU temperature sen-
sor readings. By doing this, we not only decrease the
modeling complexity but also directly capture real-time
thermal behaviors of the CPU.2

At the kth control point, we estimate p̂(k + 1):

p̂(k + 1) = PIdle + Pf (k)û(k + 1) (3)

where PIdle represents the idle power consumption. In
this paper, PIdle is measured offline when the CPU is
idle. Pf (k) in Eq. 3, called the power factor, is the gain
that captures the relation between the number of the
CPU cycles and the amount of the power consumed
for video decoding at the kth control point. Although
Eq. 3 assumes a linear relation between the CPU cycle
consumption, i.e., the number of the CPU cycles con-
sumed for video decoding, and power consumption in
a single control period, our predictive model is not tied
to the linear assumption, because the power factor is
continuously updated at every control point based on
the RC thermal model. Thus, our piecewise linear ap-
proximation from control period to period can closely
model the relation between the CPU cycle consump-
tion and power consumption even when their relation
is nonlinear over an extended time interval.

For k ≥ 1, we derive Pf (k) from Eq. 2, Eq. 3, the
measured CPU cycle consumption, and the measured
temperature value via some algebraic manipulations:

Pf (k) =
T (k)− T (k − 1) +A [T (k − 2)− T (k − 1)]

B [u(k)− u(k − 1)]
(4)

where we measure the number of the CPU cycles used
for video decoding in the kth control period, u(k), by
reading the time stamp counter (TSC) that is a hard-
ware counter readable through the IPMI at the kth

2Considering indirect/secondary hints of the CPU tempera-
ture too might enhance the accuracy of the model for additional
overheads. A thorough investigation is reserved for future work.

control point as follows:

u(k) = TSC(k)− TSC(k − 1) (5)

Therefore, p̂(k+1) can be derived, if û(k+1) in Eq. 3
is known.
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Figure 3. Number of the CPU cycles con-
sumed for different quantization parameters

Chen et al. [5] have identified the linear relationship
between the quality increment and bit rate of coded
videos through a thorough mathematical analysis and
extensive experiments. In addition, we have empir-
ically verified the linearity for several videos heavily
used in multimedia research [22, 24]. For example,
Figure 3 shows the total number of the CPU cycles
consumed to decode 600 frames of a test movie Harbor
[24] with the 704×576 resolution and 60 frames per sec-
ond (fps) frame rate for equidistant QPs in JSVM. As
shown in Figure 3, the computational load increases al-
most linearly as the QP decreases and the video quality
enhances consequently. Note that the linear relation
between the QP and CPU cycle consumption is not
limited to the tested videos but generally applicable to
videos encoded following the popular H.264/SVC stan-
dard [5]. This is because the substreams in H.264/SVC
have the same coding mechanism and configuration as
the original bit stream of a coded video, decoding more
substreams for quality enhancement increases the CPU
cycle consumption in a linear fashion [5].

By letting QP (k) represent the QP used in the kth

control period, we compute the utilization factor based
on the linear relation between the QP and the CPU
cycle consumption for video decoding at the kth control
point:

Uf (k) =
u(k)

QP (k)
(6)

where Uf (0) is calculated offline by decoding a few
frames. Note that the utilization factor is also updated
at every control point to closely keep track the relation
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between the QP and CPU cycle consumption that may
vary in time.

Based on Uf (k), we predict the estimated number of
the CPU cycles that will be needed for video decoding
in the (k+1)th control period at the kth control point:

û(k + 1) = Uf (k) ·QP (k + 1) (7)

where the manipulated variable, QP (k + 1), is the
smallest possible QP expected to not overheat the CPU
over Tmax in the (k + 1)th control period.

To compute QP (k + 1), we first substitute x(k + 1)
in Eq. 2 with Tmax−TA(k), because the temperature is
desired to converge to Tmax to support the highest pos-
sible video quality under the temperature constraint in
the (k+1)th control period. Also, we replace p̂(k+1) in
Eq. 2 with pmax(k+1), the estimated highest possible
power consumption under the thermal constraint Tmax

in the (k + 1)th control period, to derive the following
equation:

pmax(k + 1) = B−1 [Tmax − TA(k)−A(T (k)− TA(k))]
(8)

Further, we substitute p̂(k+1) and û(k+1) in Eq. 3
with pmax(k + 1) and umax(k + 1), respectively. We
then compute the estimated CPU cycle consumption
required to support QP (k+ 1) in the (k+ 1)th control
period:

umax(k + 1) =
pmax(k + 1)− PIdle

Pf (k)
(9)

To derive the manipulated variable, QP (k + 1), at
the kth control point, we replace û(k+1) in Eq. 7 with
umax(k + 1) to get the following equation:

QP (k + 1) =

⌈
umax(k + 1)

Uf (k)

⌉
(10)

After that, we ensure that QPmin ≤ QP (k + 1) ≤
QPmax where QPmin and QPmax are the minimum QP
and maximum QP used to encode the frames to be
decoded in the (k + 1)th control period, respectively:

QP (k+1) =

 QPmin if QP (k + 1) < QPmin

QPmax if QP (k + 1) > QPmax

QP (k + 1) otherwise
(11)

As quantization parameters are discrete, QP (k+1)
may not be equal to any QP available in the specified
range [QPmin, QPmax]. In such a case, the QP that
will be actually used for video decoding in the (k+1)th

control period is set to the smallest QP among the QPs
in the range that are larger than QP (k + 1).

Until every frame is decoded, our approach to CPU
temperature control via predictive quality adaptation

is repeatedly executed at each control point to prevent
violating Tmax in the next control period, while sup-
porting as high video quality as possible.

4 Performance Evaluation

In this section, the system settings for our perfor-
mance evaluation and the performance results are dis-
cussed.

4.1 System Settings

To evaluate the performance of our predictive tem-
perature control scheme, we have built a micro-testbed
using a Linux laptop with the 1.6 GHz Intel Pentium
M processor and 512 MB of RAM. In our experiments,
we decode and play one video at a time, since the lap-
top does not have enough resources to play two HD
videos at the same time. For scheduling, we have used
SCHED_FIFO. As video frames are decoded in sequence
and their absolute deadlines are assigned accordingly,
this approach is equivalent to EDF scheduling. One ex-
perimental run is 10 minutes long. After finishing an
experimental run, we wait for the laptop to completely
cool down before doing another experiment.

Tmax 75 ◦C (55 ◦C for experiments)
TAmb 27 ◦C
PIdle 10.28 W
Pc 1/r (1/frame rate)

Table 1. Thermal model parameters

We have extended JSVM [13] to support video qual-
ity adaptation using our predictive model. We read the
TSC and probe the on-chip temperature sensors using
the IPMI tools [8]. In this paper, we set the control
period Pc = 1/r where r is the frame rate of the video
being decoded. As the QP can only be changed at the
beginning of decoding a new frame, this is the short-
est control period that we can choose to manage the
CPU temperature for HD content decoding. The ac-
ceptable range of the QP, [QPmin, QPmax], is set to
[12, 44] where the difference between the two adjacent
QPs is 4. As none of the 10 users participated in our
user experience test noticed any visible quality degra-
dation due to our thermal control scheme, we focus on
the QP to describe the experimental results in terms
of the video quality.

Table 1 shows the thermal model parameters of
the processor used for our experiments. Although the
threshold temperature Tmax supported by the hard-
ware is 75◦C, we set Tmax = 55◦C in our experiments
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to avoid any system instability issues or (hardware-
triggered) processor speed reduction due to overheat,
incurring playtime deadline misses. The table also
shows the average ambient temperature TAmb and the
idle power consumption PIdle of the laptop.

Our approach to predictive thermal control is
lightweight. According to our measurement through
the Linux /proc interface, it consumes less than 3%
CPU utilization and much less than 1KB memory, be-
cause it only uses a compact set of mathematical equa-
tions composed of basic arithmetic operations.

4.2 Baselines

For performance comparisons, we implement two
baselines: (1) a static approach and (2) a reactive feed-
back controller. Hardware-based approaches, such as
DVFS or clock gating, are not considered as baselines,
because solely decreasing the CPU speed or temporar-
ily turning off a core without decreasing the amount
of the bit-stream via video quality adaptation may re-
sult in many playtime deadline misses and severe QoS
degradation. In the static open-loop approach, the QP
is calculated offline using a set of training video frames
and not adapted at run-time. For feedback control, we
implement a PI controller−a variant of a popular PID
(Proportional, Integral, and Differential) controller−to
dynamically adapt the QP considering the tempera-
ture error, i.e., the difference between the measured
temperature of the CPU and the specified tempera-
ture threshold, called the set-point, in control theory
[17]. A P controller computes the control signal in pro-
portion to the error. As a P controller by itself cannot
cancel a steady state error of a feedback control system
[17], we also use an I controller. We do not use a D
controller, similar to a feedback-based reactive thermal
control method [9].

We formulate the PI controller as an efficient form
of a transfer function that characterizes the behavior
of the feedback controller in the frequency domain [17]:

C(z) =
G1(z −G2)

z − 1
(12)

In Eq. 12, G1 = KP (KI+1) and G2 = 1
KI+1 where KP

and KI are the proportional and integral control gains.
To support the stability of the closed-loop system, we
tune KP and KI using the Root Locus method [17] in
MATLAB to graphically locate the closed-loop poles
inside the unit circle to support the stability of the
closed-loop system. For more details about a PI con-
troller design and tuning via the Root Locus method,
readers are referred to [17]. Generally speaking, stabil-
ity analysis of a predictive control system is an open

issue [16]. In this paper, we strive to closely keep track
the CPU thermal characteristics by continuously up-
dating the model parameters, while leveraging multi-
media workload semantics. A thorough analysis of the
stability of our predictive control scheme is reserved for
future work.

4.3 Experimental Results

In the static approach, we have tried to find an ap-
propriate QP value to support acceptable video qual-
ity without overheating the CPU using a training set
of SVC video frames. Unfortunately, this attempt was
unsuccessful. As different videos may have largely dif-
ferent computational requirements, finding a single QP
that can both avoid overheating the CPU and support
acceptable quality for different videos is very hard, if at
all possible. Even for a single video, we have found that
one QP value is not enough to support both the tem-
perature constraint and highest possible quality under
the constraint due to the relatively intensive and dy-
namic workload that may change from scene to scene.
Although we have manually tried various QP values,
the tested QP values have resulted in either too low
quality or excessive CPU temperature in the static ap-
proach. In general, the static approach has failed to
balance between the temperature constraint and video
quality. From these results, we observe that it is re-
quired to dynamically adapt the video quality, if nec-
essary, to support the temperature constraint, while
providing as high video quality as possible. Thus, we
only present the performance results of the reactive
feedback control scheme and our predictive approach.

In the rest of this section, we first present the ex-
perimental results for a sample movie, called Elephant
Dream [22], which supports 1280 × 720 resolution at
24fps and has 15691 frames in total, in detail. We then
present the experimental results for six HD videos in
Table 2 [22, 24] frequently used to evaluate the perfor-
mance of multimedia codecs. In our experiments, for
the reactive PI controller, the QP is initialized as 24
that is at the end of the lower half of the QP range
used in our experiments. Our predictive scheme de-
rives the highest possible QP at the beginning of an
experiment based on the slice data of the first frame
and initial model parameters derived offline, e.g., PIdle

and Uf (0), as described in Section 3. In addition, we
note that the required offline modeling in our predictive
thermal control scheme is relatively minimal compared
to the PI controller that heavily relies on offline mod-
eling of the controlled system [17], e.g., a multimedia
system.

Figure 4 shows the temperature and QP curves for
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Figure 4. CPU temperature and QP of
the PI controller for Elephant Dream
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Figure 5. CPU temperature and QP of the
predictive controller for Elephant Dream

the PI controller. The temperature begins to exceed
Tmax = 55◦C at 140s. The highest temperature is
60◦C as shown in the figure. Since the PI controller
is reactive, it starts to degrade QP after the CPU tem-
perature exceeds Tmax. As a result, it cannot cancel
thermal overshoots until 400s. Since the heat cannot
be dissipated immediately, the PI controller has to con-
tinuously degrade the video quality by increasing the
QP from 24 to 40 between 140s and 310s. From 310s to
390s, the temperature converges down to the vicinity
of Tmax due to the QoS degradation in reaction to the
thermal errors measured in the feedback loop. When
the feedback controller detects a temperature under-
shoot after 420s, it starts to roll back to a higher quality
level by decreasing QP back to 32 as shown in Figure 4.
Due to the reactive nature and non-immediate heat dis-
sipation, the PI controller suffers from the temperature
overshoots that exceed Tmax and QoS degradation for a
relatively long time. In fact, many deadlines could have
been missed due to thermal faults incurring hardware-
triggered CPU speed reductions, if Tmax had been set
to the hardware-specified maximum value. Thus, in
this paper, we favor the PI controller by setting Tmax

to a lower value than the threshold specified by the
hardware.

Figure 5 shows the CPU temperature and QP curves

for our predictive controller. In our approach, the high-
est temperature observed for decoding Elephant Dream
is only 55.2◦C. Thus, it exceeds Tmax by no more than
0.2◦C. Different from the feedback controller, the QP
does not exceed 36 as shown in Figure 5. Further, the
QP is 36 only briefly. By comparing Figures 4 and 5, we
observe that the predictive controller begins to increase
the QP earlier than the reactive PI controller does. As
soon as our approach predicts a temperature overshoot
in the next control period, it immediately begins to
gracefully degrade the video quality to avoid overheat-
ing. As a result, it closely supports Tmax, while provid-
ing the video quality comparable to or slightly higher
than the video quality supported by the PI controller.

Notably, our predictive approach estimates the max-
imum power consumption expected to increase the
CPU temperature to Tmax in the next control period.
In practice, this is somewhat pessimistic, because the
actual chip temperature may not increase so fast within
one sampling period due to the physical thermal char-
acteristics and any potential cooling. Being aggressive,
however, our predictive model requires QoS adaptation
to prevent thermal faults well in advance. As a result, it
avoids relatively severe QoS degradation (or potential
deadline misses) observed after thermal faults occur in
the reactive method. A less aggressive model could
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support higher QoS, missing no deadline or only a few
deadlines due to small, controlled thermal overshoots.
This is reserved for future work.

Tested Control Temperature Settling
Video Method Overshoot Time

B.B. Bunny PIC 61.3 ◦C 286s
PRE 55.4 ◦C 8s

Bridge (Close) PIC 60.7 ◦C 278s
PRE 55.2 ◦C 6s

Bridge (Far) PIC 60.9 ◦C 274s
PRE 55.3 ◦C 6s

E. Dream PIC 60.0 ◦C 270s
PRE 55.2 ◦C 5s

Highway PIC 63.2 ◦C 297s
PRE 55.3 ◦C 11s

Paris PIC 61.0 ◦C 281s
PRE 55.1 ◦C 3s

Table 2. Performance of controllers for differ-
ent videos (PIC: PI Controller, PRE: Predictive
Approach)

The performance results of the tested approaches
for the other videos are similar to Figures 4 and 5. Ta-
ble 2 shows the highest temperature overshoot and the
total length of the time intervals in which the temper-
ature exceeds the threshold, called the settling time in
control theory [17], for the feedback control and pre-
dictive schemes. As summarized in the table, our pre-
dictive method exceeds Tmax by no more than 0.4◦C,
i.e., 0.007%. Further, the settling time is between 3s −
11s only. In contrast, the PI controller exceeds Tmax

by 5◦C − 9.4◦C, i.e., 9% − 17%. Also, its temperature
settling time is 270s or longer.

5 Related Work

In this section, a high level overview of previous
work on thermal control in real-time systems is given.

Reactive Methods. A number of reactive ap-
proaches to CPU temperature control in real-time sys-
tems have been developed. Wang et al. [25] analyze
the schedulability of hard real-time tasks under a re-
active thermal control scheme. Chantem et al. [3]
adapt the processor speed via DVFS once the CPU chip
reaches the temperature threshold. Kumar and Thiele
[14] compute the delay bound by analyzing a variable
stream of jobs when the temperature constraint is sup-
ported via reactive speed scaling. Quan et al. [19] de-
velop a reactive control algorithm, in which the CPU
voltage is decreased when the temperature exceeds the
specified threshold. Fu et al. [9] design a two-level

nested feedback controller to manage the CPU tem-
perature by manipulating the CPU utilization. How-
ever, reactive temperature control for real-time mul-
timedia applications is very hard, because the accu-
mulated heat cannot be dissipated immediately upon
a thermal overshoot. Thus, approaches that react to
thermal overshoots occurred in the previous control pe-
riod may suffer from deadline misses and QoS degrada-
tion due to thermal faults for a relatively long interval
of time. As a result, the reliability of the circuit could
be diminished too.

Predictive Approaches. In their proactive set-
ting, Wang et al. [25] devise a processor speed sched-
uler at design time to support thermal constraints in
real-time systems. The feasibility of leakage-aware pe-
riodic tasks under thermal constraints is analyzed in
[19]. Hettiarachchi et al. [11] have developed a predic-
tive technique to allow a system designer to precisely
quantify the hard real-time performance degradation
due to thermal events a priori. In real-time multimedia
applications, however, it is very hard to derive appro-
priate QoS levels, which are neither too pessimistic nor
too optimistic under a temperature constraint at design
time. Instead, at each control point, we update the pre-
dictive model and dynamically adapt the QP, if neces-
sary, to avoid overheating via minimal QoS adaptation
in the next control period. In addition, temperature
management schemes are developed for multiprocessor
real-time systems [26, 20, 4, 2, 7, 10].

However, most of the approaches discussed in this
section rely on DVFS or power gating, an offline anal-
ysis of the worst case execution times for the known in-
put, or static speed assignment at design time. DVFS
or power gating without video quality adaptation may
severely degrade the QoS as discussed before. Also, ap-
proaches based on an offline analysis of the task execu-
tion times for the known input are not directly applica-
ble to thermal control for different videos, because the
workload may vary considerably from frame to frame
even in one video.

6 Conclusions and Future Work

In a number of applications, e.g., visual surveillance
or traffic control, real-time systems need to deal with
computationally demanding and dynamic multimedia
workloads, e.g., HD video streams. In these systems,
CPU thermal faults can result in many deadline misses.
In this paper, we derive a CPU temperature predic-
tion model and design a predictive approach to avoid-
ing temperature overshoots based on the model, while
supporting as high video quality as possible under the
temperature constraint. By extending an open-source
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H.264/SVC framework, we have compared the perfor-
mance of our approach to a static approach and a re-
active feedback controller representing the state of the
art. In our approach, the highest CPU temperature
does not exceed the threshold by more than 0.007%
and a temperature overshoot is canceled in no more
than 11s. Further, the video quality supported by our
approach is similar to or slightly better than that pro-
vided by the baselines, which fail to control the temper-
ature to be below the threshold for 270 seconds or more
in 10 minute experiments. In the future, we will con-
tinue to enhance our approach, while exploring other
research issues, such as thermal control for multicore
real-time systems.
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