
Parallel and Distributed Approach for Processing

Large-Scale XML Datasets

Zacharia Fadika 1, Michael R. Head 2, Madhusudhan Govindaraju 3

Computer Science Department, Binghamton University

P.O. Box 6000, Binghamton, NY 13902-6000, USA
1
zfadika@cs.binghamton.edu
2
mike@cs.binghamton.edu

3
mgovinda@cs.binghamton.edu

Abstract—An emerging trend is the use of XML as the
data format for many distributed scientific applications, with
the size of these documents ranging from tens of megabytes
to hundreds of megabytes. Our earlier benchmarking results
revealed that most of the widely available XML processing
toolkits do not scale well for large sized XML data. A significant
transformation is necessary in the design of XML processing for
scientific applications so that the overall application turn-around
time is not negatively affected. We present both a parallel and
distributed approach to analyze how the scalability and perfor-
mance requirements of large-scale XML-based data processing
can be achieved. We have adapted the Hadoop implementation
to determine the threshold data sizes and computation work
required per node, for a distributed solution to be effective.
We also present an analysis of parallelism using our PIXIMAL

toolkit for processing large-scale XML datasets that utilizes the
capabilities for parallelism that are available in the emerging
multi-core architectures. Multi-core processors are expected to
be widely available in research clusters and scientific desktops,
and it is critical to harness the opportunities for parallelism
in the middleware, instead of passing on the task to application
programmers. Our parallelization approach for a multi-core node
is to employ a DFA-based parser that recognizes a useful subset of
the XML specification, and convert the DFA into an NFA that can
be applied to an arbitrary subset of the input. Speculative NFAs
are scheduled on available cores in a node to effectively utilize
the processing capabilities and achieve overall performance gains.
We evaluate the efficacy of this approach in terms of potential
speedup that can be achieved for representative XML data sets.

I. INTRODUCTION

Scalable processing of XML datasets is an immediate

concern as the size of XML data used by applications has

steadily increased over the years in both scientific and business

applications. For example, recognizing the increasing role of

XML in representation and storage of scientific data, XDF, the

eXtensible Data Format for Scientific Data, is being developed

at GSFC’s Astronomical Data Center (ADC), to describe

an XML mark-up language for documents containing major

classes of scientific data. This effort is expected to define

a generic XML representation to accommodate the diverse

needs of various scientific applications. The MetaData Catalog

Service (MCS) [1] provides access via a Web service interface

to store and retrieve descriptive information (metadata) on

millions of data items. While the Web service approach of

MCS provides interoperability, it also hurts the performance

when compared to use of a standard database for storage and

retrieval. Scientific applications such as Mesoscale meteorol-

ogy [2] depend on the orchestration of several workflows,

defined in XML format. The international HapMap project

aims to develop a haplotype of the human genome. The

schemas used to describe the common patterns in human DNA

sequence variation can have tens of thousands of elements. The

XML files in

Our earlier work on benchmarking XML processing showed

that for most XML toolkits scalability is adversely affected as

the size of the XML datasets increase [3], [4]. These toolkits

are typically designed to process small-sized XML datasets.

The recent trends and announcements from major vendors

indicate that the number of cores per chip will steadily increase

in the near future. The performance limitation of existing XML

toolkits will likely be exacerbated on multi-core processors

because performance gains need to be mainly achieved by

adding more parallelism rather than serial processing speed.

Additionally, scalable processing of XML data is now of

critical importance in scientific applications where the size of

XML can exceed hundreds of megabytes, and processing on a

single node may not be a viable option. As a result, our focus is

both on micro-level as well as macro-level parallelism. At the

micro-level, we harness the benefits of fine grained parallelism,

exploiting well-known SMP programming techniques, and

design processing modules that scale well with the increase in

number of processing cores on a single node. At the macro-

level, we apply the distributed processing of large-scale data

stored in a cluster, by applying the MapReduce processing

paradigm [5]. An advantage of the MapReduce model is

that it has relaxed synchronization constraints, which works

favorably for large-scale XML data sets, wherein typically

namespaces that are once defined at the start of the document

are not redefined in in the inner-elements. The simplicity and

robustness of the MapReduce model also reduces the burden

on application programmers.

The emergence of Chip Multi Processors (CMPs), also

called multi-core processors, provides both opportunities and

challenges for designing an XML processing toolkit tailored

for large-size XML data sets.

Compared to classic symmetric multi-processing systems

(SMPs) of independent chips, the communication costs of on-

chip shared secondary cache in CMPs is considerably less,

providing opportunities for performance gains in fine-grained

multi-threaded parallel code. CMPs provide special advantages

due to locality. The individual cores are more closely con-

nected together than in an SMP system. Multiple cores on

the same chip can possibly share various caches, including

the TLB, and the bus. An important design consideration is

that off-chip memory access and latency can be the choking

point in CMP processors. Our approach is to speculatively

execute XML processing tasks on available cores to leverage

the opportunities for fine-grained parallelism available while

processing XML datasets on a multi-core node.

In this paper we present a distributed implementation of

large-scale XML processing, adapting the splitting module of

the Hadoop implementation [6], to determine the threshold

values for data size and number of processing nodes. The

overall experimental data and analysis can be used to quan-

tify the exact configuration to be used to gain performance

enhancements for a given application setting.

II. RELATED WORK IN XML PROCESSING

XML primarily uses UTF-8 as the representation format for

data and various studies have shown that this representation

format can hinder the overall application performance. Send-

ing commonly used data structures via standard implementa-

tions of XML based protocols, such as SOAP, incurs severe

performance overheads, making it difficult for applications to

adopt Web services based distributed middleware [4]. Recent

work by Zhang et al [7] has demonstrated that it is possible

to achieve high performance serialized parsing. They have

developed a table driven parser that combines the parsing

and validating an XML document in a very efficient way.

While this technique works well for serial processing, it is

not tailored for processing on multi-core nodes, especially for

very large document sizes. Several novel efforts to analyze

the bottlenecks and address the performance at various stages

of a Web services call stack have been discussed in the

literature [7]–[10]. The toolkits that work efficiently in the uni-

core case include gSOAP [11], VTD-XML [12], Libxml [13],

Expat [14], Qt4 [15], and Piccolo [16]. The widely used

Xerces (DOM and SAX) [17] toolkit, has a rich set of features,

but suffers from significant performance bottlenecks.

In our previous work in this area, we focused on state-

scalability for the parser and the memory requirements for ar-

rays of primitives when multiple threads operate concurrently

to read large input files [18]. One related project by Pan et.

al., the MetaDFA [19], [20] toolkit, presents a parallelization

approach that uses a two-stage DOM parser. It conducts

pre-parsing to find the tag structure of the input before, or

possibly pipelined with, a parallelized DOM builder run on

its output (a list of document offsets of start and end tags).

Our toolkit, PIXIMAL, however, generates SAX events and

thus serves a different class of applications than MetaDFA.

Additionally, PIXIMAL conducts parsing work dynamically,

and generates as output a sequence of SAX events. This

results in larger number of DFA states, and more opportunities

for optimizations for different class of application data files.

Additionally, for distributed filesystems, we have designed the

processing as a MapReduce application by distributing work

to nodes to execute the processing of a select number of

document parts.

III. MICRO-PARALLELISM FOR XML DATA PROCESSING

A deterministic finite automata (DFA)-based lexical scanner

is generally used to tokenize the input characters of the file (or

string, as in the case of XML) into syntactic tokens that are

used later in the parse phase. The DFA based lexical scanner

is sometimes hand-coded, and frequently generated by a tool

such as flex. Every time the scanner recognizes a token, it

must perform some action to store the token or pass it to a

higher level part of the parser. The various token types and

keywords of XML, used in distributed applications, can be

defined as regular expressions. A DFA-based scanner can be

custom-designed to process the subset of the XML specifi-

cation used in defining large-scale data files in applications.

The DFA model for processing is efficient: each character in

the input XML document is read only once, minimizing the

overhead on a per-character basis.

The DFA approach does not directly lend itself to paral-

lelism. It is required to start at the beginning of the input and

process all the characters sequentially. As there is no way to

determine in which state the DFA will be in after processing

a certain section of the input, it is not possible to simply split

the input in two (or more sections) and process the different

sections independently. Due to this reason, all the widely used

XML parsers are limited to a serialized indivisible scanner.

This approach has thus far been acceptable for small files and

desktop-style mass storage devices, because the scanner is fast

for small input files. Additionally, this approach blends well

with desktop mass storage access algorithms that work well

reading from a single stream from disk.

A. Speculative NFA Execution in PIXIMAL

The speculative execution approach of PIXIMAL is to divide

the input XML document, P , into N substrings, P1, P2, ...PN .

The processing on substring P1 is carried out using the

standard DFA-based lexical analyzer, as a DFA can only

be run at the starting state using the first character of an

input string. This DFA instance is termed the “initial DFA.”

The other processing units in a multi-core processor are

utilized by concurrently executing N − 1 speculative scanners

on the remaining substrings P2, P3, ...PN . The processing is

speculative as it is not possible to determine the start state

for the LDFA, except for P1. As a result, we have added a

transformation module to the PIXIMAL framework that can be

applied to create a scanner, which can be applied to any of

the substrings.

The DFA above is transformed into an NFA, LNFA con-

taining precisely the same state nodes, transitions, and final

states as LDFA. One significant change is made: each state

node, with the exception of the error state, is marked as a start

state. The parser built around this NFA reads each character of

input, traversing along all execution paths, one for each state

Si. If a given transition triggers an action (such as triggering a

StartElement SAX event in the user code), that action is stored

into an action list ASi
for that execution path, since it cannot

be triggered immediately.

There is a single correct execution path which is the path

started in state Sk, the state that the LDFA would have been

in had it parsed the input up to the beginning of this input

substring. Sk will be known when the DFA or NFA running

on the input behind it is complete and, if it is an NFA, knows

its own correct execution path. Once Sk is known, the actions

in action list ASk
can be triggered, after some minor fix-up to

merge the parser state from the previous automaton and the

first action in this automaton’s action list. This is necessary

because the NFA may have started in the middle of a token,

or more complexly, in the middle of an XML tag, which

contains several tokens: a tag name and zero or more attribute

name/value pairs. This fix-up is minor and a function to the

number of automata used, as opposed to the size of the input,

so can be viewed as a O(1) cost once the number of available

computing cores is set.

B. Limitations of Micro-parallelization of XML

Our past work demonstrates that the level of speedup

obtainable using micro-parallelization techniques is limited:

other system resources, such as memory bandwidth become

bottlenecks [21]. We present some new experimental results

here to quantify the gains and limitations of the micro-

parallelism approach.

1) Systems Used: We run our tests on a selection of four

machine classes:

• 1× dual core – One desktop-class machine, which has a

single 2.4Ghz Intel Core2 6600 with 2GB of ECC RAM,

running Linux 2.6.24. The filesystem in use here is ext3fs.

• 2× uniprocessor – 1U nodes in a cluster, each of which

has two 3.2Ghz Intel Xeon CPUs, 4 gigabytes of RAM

and run a 64 bit version of Linux 2.6.15. Results on

this class of machines are taken by averaging the timings

found on 4 of these nodes. The filesystem in use in the

test directory here is reiserfs.

• 2× dual core – 1U nodes in a cluster, each of which

has two 2.66Ghz Intel Xeon 5150 CPUs, 8 gigabytes of

RAM and run a 64 bit version of Linux 2.6.18. Results on

this class of machines are taken by averaging the timings

found by running the test on 10 of these nodes. The

filesystem in use in the test directory here is xfs.

• 2× quad core – 1U nodes in a cluster, each of which

has two 2.33Ghz Intel Xeon E5345 CPUs, 8 gigabytes

of RAM and run a 64 bit version of Linux 2.6.18. 10

nodes from this cluster were selected to perform this test

and the results presented reflect the mean timings taken.

The test directory on these machines is backed by a xfs

filesystem.

2) Memory Bandwidth: We examined the memory band-

width limitations of systems in our clusters to determine if the

PIXIMAL would be applicable. In these tests, we modeled the

2 3 4 5 6 7 8

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Number of threads

S
p

e
e

d
u

p

cores

2

4

8

Fig. 1. The limitation on memory bandwidth when attempting to concurrently
feed several cores different segments of a large (100MB) file. As the number of
cores in a single system increases, memory bandwidth becomes a bottleneck.

work being done to read the input from memory, as PIXIMAL

does, directing multiple threads to read from different sections

of a 100MB input XML file – a protein sequence database

[22]. Figure 1 demonstrates that current systems do provide

wide enough access to memory to facilitate the approach,

but only to a certain extent. Once the number of cores

being utilized goes beyond six, little gain is possible, if the

computation requires to parse the input is small in comparison

to the time required to access the bytes of the input in memory.

3) Maximum Potential Speedup for PIXIMAL: We also

examined the best-case scenarios for PIXIMAL speedup by

running its automata components sequentially instead of con-

currently. The time it takes for the longest parser to completely

parse its input segment represents a lower bound on the time

the concurrent version would take if all components were

scheduled to run concurrently. The input is divided up to

eight ways and processed by automata sequentially, with each

automata allowed as much of any system resource it requests.

We discuss some interesting results here.

The input used for the results described is a collection of

XML documents containing SOAP-encoded arrays of Mesh

Interface Objects (MIOs) which model three dimensional

objects as a collection of points with integral X and Y values

and a floating point Z value. The size of the array encoded is

scaled from ten up to 50,000 elements long. Figure 2 shows

the maximum, mean, and minimal potential speedup over that

range of inputs.

Figures 3 and 4 investigate one data point in figure 2,

namely the maximal value of the independent variable: 50,000

array elements. It is apparent that dividing the work further

is not an efficient way to achieve speedup. Note that the low

point in 3 when the thread count is 8 is not an indication of

the trend, but rather an artifact of the splitting algorithm. If

the input is split such that at least one of the NFAs cannot

eliminate several dead states as mentioned above, then that

automaton will become the processing bottleneck. The portion

0 10000 20000 30000 40000 50000

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Array Size

P
o
te

n
ti
a
l
S

p
e
e
d
u
p

Max Speedup

Mean Speedup

Min Speedup

Fig. 2. The maximal, minimal, and mean potential speedup across a range
of lengths, from 10 to 50,000, of arrays of Mesh Interface Objects.

2 3 4 5 6 7 8

0
.0

0
.5

1
.0

1
.5

2
.0

Thread Count

P
o

te
n

ti
a

l
S

p
e

e
d

u
p

Max Speedup

Mean Speedup

Min Speedup

Fig. 3. Potential scalability for XML input encoding an array of 50,000

Mesh Interface Objects. The number of threads available is the independent
variable here. A slight speedup is possible by adding more threads for this
class of input.

of the input not given to the DFA is always divided evenly

among the NFAs which can lead to this situation.

Figure 4 re-presents the same data from figure 3. The split

percent parameter determines how much of the input file is

given to the DFA. For each split percent, a variety of thread

counts is chosen, from two to eight. It is clear for inputs such

as arrays of MIOs, selecting the division point is critical.

These tests represent the best case scenario for PIXIMAL,

where each thread has uncontended access to all system

resources because each component is run by itself. When the

threads run concurrently, a number of system level bottlenecks

become apparent, further reducing speedup. These limitations

become more apparent as the input size increases, because

each PIXIMAL thread requires f(N) ∈ O(N) space to store

its sequence of actions.

These results led us to the approach of securing additional

resources for each thread by distributing the workload to

a cluster of machines using the Hadoop implementation of

0 20 40 60 80 100

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Split Percent

P
o

te
n

ti
a

l
S

p
e

e
d

u
p

Max Speedup

Mean Speedup

Min Speedup

Fig. 4. Similar to figure 3, this graph presents the result on speedup of varying
the split percent parameter when processing an encoded array of 50,000 Mesh

Interface Objects. Maximal and minimal speedups for each selection of split
percent are shown. The range of values comes from varying the number of
threads.

MapReduce.

IV. MACRO-PARALLEL XML PROCESSING WITH HADOOP

We applied the MapReduce model to the parsing of XML

data sets, with a widely used web service application, Axis-

Java, which is a widely used web services-based application

toolkit. For example, it is included in the reference implemen-

tation of WSRF available with the Globus Toolkit. AxisJava

is primarily a SOAP engine that allows for the creation of

SOAP processors used in the parsing of XML dataset items as

requests sent from a user or a process. The streaming requests

are then generated into an application friendly content, which

can subsequently be processed as the user sees fit. For our

part, we delved into AxisJava’s source code, studied its SOAP

decoding module in an effort to integrate it into a Hadoop

application. This application then allows us to perform on a

given cluster of nodes, the same type of parsing that Axis-

Java would normally perform while running on a standalone

machine such as a desktop computer. It has been shown that

AxisJava tends to perform rather poorly when it comes to

parsing and processing arrays of type double [3], [9]. What

makes this analysis interesting is that objects of type double

are more likely to figure in scientific data samples bound for

analysis and processing. This is one of the motivating factors

that led us to analyze the problem at hand, and consequently

devise a way to integrate the AxisJava parsing mechanism into

a computing grid platform; thus allowing researchers and grid

application programmers working with costly data types to use

this framework for a significant performance improvement.

For our purpose, we adapted Hadoop’s splitter implemen-

tation so that the XML dataset is effectively split on data

element boundaries, and also, as to allow us to configure at

run-time the chunk sizes of double objects fed to the nodes.

We devised a processing barometer, which allows us to

determine the amount of CPU processing taking place on

every parsed element. This is particularly useful because

prior investigations and experiments performed on Hadoop

have proven to show that clusters deprived of meaningful

processing on their inputs, will tend to buckle under network

and redundancy assurance latencies, enabling them to perform

even worse than a standalone node. This is because without

meaningful processing on parsed input values, a grid system

in general, and here Hadoop in particular will suffer from

its own operating cost; such costs being, network latency,

initialization time, and redundancy checks (to determine node

failure), which undoubtedly as a cumulus of factors will hinder

performance. The observation can –and is meant to– serve

as a barometer to scientists for evaluating how big a cluster

one is to run, when certain expectations on particular types

of performance directives are made. Also, and more trivially:

how much performance different data sizes will yield, paired

with definite amounts of processing on each of data item to be

processed. As our experiments have shown, Hadoop performs

increasingly differently for different processing work loads.

Simply put, increasing how much processing is taking place

on each input element, undoubtedly increases the performance

of the cluster relative to an individual system, and yields

interesting results. This is because in those very conditions, the

parallelism of the grid is fully exploited at its utmost potential.

We quantify these costs and thresholds to aid application

programmers in allocating resources in accordance with their

data size and shape.

Our experiments use the same systems described in section

III-B1. The master system for Hadoop is the 1× dual core

desktop system and the slave systems are chosen from the

collection of 64 2× dual core cluster systems.

V. PERFORMANCE RESULTS

Figure 5 shows how a scientist’s time can be saved by

off-loading processing work to even a 3 node cluster. The

single node represents the time it takes to process the input

file on a workstation-class (the 1× dual core desktop system).

Using our synthetic loading scenario, when the input grows

above just about 400 kilobytes, it begins to be valuable to

offload to a MapReduce cluster. Below that threshold, not

enough processing takes place, the cluster is burdened with

redundancy checks and network traffic for just small chunks

of input. In this scenario, when computation is not sufficient

enough to offset communication latencies due to the number

of running computers, a single node, which minimally suffers

from the same condition would perform better than a cluster

of computers. However, as the input dataset size grows, the

cluster can comfortably offset diverse latencies and overhead

encountered with abundance of processing, which the single

node cannot. This fact is illustrated by the cluster performance

curve showing a stable tenure above 400KB, whereas the

processing time of the single node skyrockets for increasingly

large files.

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

0
2

0
4

0
6

0
8

0

Input size (MB)

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

●

●

●

●

●

SingleNode

Cluster_3_Nodes

Fig. 5. Shows the performance of a 3 node cluster against a single node
computer in processing differently sized arrays of doubles. Up to 400KB of
data, the single node performs better than the Hadoop cluster simply because
in the 3 node system every machine is competing for one single output file
in HDFS, and suffering from latencies, while the input size isn’t big enough
to offset those factors.

●

●

●

●

●

●

●

0 10 20 30 40 50 60

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0

Number of nodes

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

Fig. 6. Performance displayed by the cluster as the number of nodes is
gradually increased on a 150 Megabyte dataset.

●

●

●

●

●

●

0 10 20 30 40 50 60

0
2

4
6

8
1

0

Number of nodes

S
p

e
e

d
u

p

Fig. 7. Speedup achieved by the cluster over a single node computer on a 100
MB dataset. Much like the previous test, the speedup stabilizes over a certain
threshold, in this case, over 32 nodes, even as the number of computing nodes
is doubled.

Figure 6 displays the time it takes to process a 150MB

input array of doubles as the number of nodes is gradually

increased. Performance gains tail off between 16 and 32 node

cluster sizes, as communication overhead and the serialized

portions of the process dominate the parallelizable portions.

The work of shipping data around the cluster and managing

the nodes begins to dominate the actual work-load, because the

optimum number of cluster machines for the job at hand has

been exceeded. The dataset here as in the previous experiment

is that of a an array of type double. The file size is 150MB,

which roughly corresponds to 12.6 million data items. The

graph shows a clear improvement with node increase up to 24

nodes, and then shows a flattening of the performance curve.

Beyond 24 nodes, the necessary processing power is at its

maximum. The addition of supplementary nodes introduces

unnecessary communication overhead, which slowly starts to

hamper the performance itself, thus causing a slowing of the

curve. This shows that too many nodes can negatively affect

performance, just as too few nodes or lack of processing can.

Figure 7 presents data similar to those in figure 6, using

speedup (computed as T1

Tp
) and a 100MB input file. Perfor-

mance tails off when the cluster size reaches 32-nodes. In this

case, T1 is computed by running the test against a Hadoop

cluster with a single slave system.

Figure 8 presents data representing the performance of the

cluster as the required processing time on each one of its

individual input items is gradually increased. Using speedup

(computed as T1

Tp
), a 100MB input file, different processing

times on each double parsed from the input file, the individual

cluster setups run better with more work to do on each input

item. This goes to corroborate the fact that the processing load

● ● ●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
5

1
0

1
5

2
0

2
5

3
0

Processing in Milliseconds

S
p

e
e

d
u

p

Single node threshold

2 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

Fig. 8. Speedup achieved by the cluster over a single node computer while
varying the amount of processing to be performed on every single input item.
This is based on a 100 MB dataset run. The red line shows the performance
threshold that a single node system generated. Much like the previous test,
the speedup tends to stabilize over a certain threshold, in this case over 32
nodes.

for a job must trump the different overhead considerations of

that very job, for the use of the cluster to be fully efficient.

Speedup is computed against a single slave system, and

speedup is also shown between increasingly sized clusters.

This graph clearly illustrates that as processing is cranked up,

regardless of the size the cluster at hand sports, the system

performs much better, even outdoing its previous runs. On the

same logical path, bigger clusters perform doubly better than

smaller ones in the face of processing increases. This trend of

improved performance with increased workload plateaus off

after 32 nodes for the 100 MB data set.

VI. CONCLUSIONS

• As evinced by Amdahl’s law, the speedup is limited by

the sequential fraction of the program. The sequential

aspect for XML data processing includes access to main

memory for shared data structures, resolving namespaces

that may have dependencies, and updates of data struc-

tures to keep track of the automata that need to be

stored as well as the ones that need to be discarded. For

XML datasets close to 100MB in size, as the number of

processing cores in a node is increased beyond 6, memory

bandwidth becomes a limiting factor in data processing

when dealing with single computing nodes.

• The PIXIMAL framework can be used to determine the

most optimal way to split an XML data input file to

obtain best possible speedup. Performance results for

commonly used data structures, such as MIOs, indicate

that application programmers need to carefully choose the

split percentage and number of processing threads for the

target computational nodes. Naively dividing the input

among the cores may lead to a performance slowdown.

Our results quantify the optimal thread count and number

of cores to be used for each data size in order to obtain

efficient processing. On an 8 core machine, the best

speedup of 2.0 is possible when the workload is divided

among 6 or 7 threads.

• Micro-parallelization techniques have limited efficacy

within a single computing node due to the effect of

shared resources such as memory and I/O channels.

When these limitations become the bottleneck, applica-

tion developers should not hesitate to examine existing

macro-parallelization techniques like MapReduce as im-

plemented by tools such as Hadoop.

• When using a distributed approach to try to find perfor-

mance improvements, it is important to consider whether

computation or access to I/O is the bottleneck. A MapRe-

duce approach can be indicated in either case, because

it facilitates the utilization of many machines’ CPU and

disk resources. On the other hand, there is a startup cost

involved in launching a Hadoop job. There is also a

cost associated with insuring that nodes are harmoniously

performing the given processing. It is then critical to

examine whether these diverse costs are higher than the

benefit resulting from the use of the clusters’ resources

versus a single node in certain cases. It is also critical to

recognize before hand, not so much the size of the data

to be processed, but rather the intensity of the processing

to be taking place.

VII. FUTURE WORK

For applications that require processing of terabyte size

datasets, mass storage is more likely to be arranged in higher

performance configurations such as RAID, NAS, and SAN.

These configurations are likely to efficiently feed multiple data

streams to concurrent threads. We plan to study the benefits

and limitations of our parallelization approach when applied

to such cases.

In future work, we plan to also analyze the effect of disk

I/O for our micro- and macro-level optimizations schemes.

We will quantify the gains that PIXIMAL can achieve with

pre-fetching and piped implementation techniques. We will

explore the effect of operating system-level caching on the

processing of large datasets that are processed repeatedly.

We will also develop algorithms for optimal layouts of DFA

tables in memory to efficiently process frequently occurring

transitions.

We plan to quantify the threshold points for our adapted

Hadoop implementation for a wider range of grid application

datasets. Apart from size of datasets, we will also identify

the threshold points for different network, I/O, memory, and

processor configurations that are available in widely used grid

infrastructures.

REFERENCES

[1] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, S. Patil, and L. Pearlman, “A Metadata Catalog Service

for Data Intensive Applications,” in SC ’03: Proceedings of the 2003

ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2003, p. 33.

[2] D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy, Y. Simmhan, and
A. Slominski, “On Building Parallel and Grid Applications: Component
Technology and Distributed Services,” in CLADE ’04: Proceedings of

the Second International Workshop on Challenges of Large Applications

in Distributed Environments. Washington, DC, USA: IEEE Computer
Society, 2004, p. 44.

[3] M. R. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-Ghazaleh,
R. van Engelen, K. Chiu, and M. J. Lewis, “A Benchmark Suite
for SOAP-based Communication in Grid Web Services,” in SC ’05:

Proceedings of the 2005 ACM/IEEE conference on Supercomputing.
Washington, DC, USA: IEEE Computer Society, 2005, p. 19.

[4] M. R. Head, M. Govindaraju, R. van Engelen, and W. Zhang, “Bench-
marking XML Processors for Applications in Grid Web Services,” in SC

’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM Press, 2006, p. 121.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[6] Apache Hadoop. [Online]. Available: http://hadoop.apache.org
[7] W. Zhang and R. A. van Engelen, “A Table-Driven Streaming XML

Parsing Methodology for High-Performance Web Services,” in ICWS

’06: Proceedings of the IEEE International Conference on Web Services

(ICWS’06). Los Alamitos, CA, USA: IEEE Computer Society, 2006,
pp. 197–204.

[8] N. Abu-Ghazaleh and M. J. Lewis, “Differential Deserialization for
Optimized SOAP Performance,” in SC ’05: Proceedings of the 2005

ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2005, p. 21.

[9] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating the Limits of
SOAP Performance for Scientific Computing,” in HPDC ’02: Proceed-

ings of the 11th IEEE International Symposium on High Performance

Distributed Computing. Washington, DC, USA: IEEE Computer
Society, 2002, p. 246.

[10] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gan-
non, “Requirements for and evaluation of RMI protocols for scientific
computing,” in Supercomputing ’00: Proceedings of the 2000 ACM/IEEE

conference on Supercomputing. Washington, DC, USA: IEEE Computer
Society, 2000, p. 61.

[11] R. van Engelen, “gSOAP: C/C++ Web Services and Clients,” 2007, http:
//www.cs.fsu.edu/∼engelen/soap.html.

[12] J. Zhang, “Project Homepage of VTD-XML,” 2007, http://vtd-xml.
sourceforge.net/.

[13] D. Veillard, “The XML C parser and toolkit of Gnome,” 2006, http:
//xmlsoft.org/.

[14] J. Clark, “Expat is an XML parser library written in C,” http://expat.
sourceforge.net/.

[15] Trolltech, “API Documentation for QtXml Module,” 2007, http://doc.
trolltech.com/4.2/trolltech.html.

[16] Y. Oren, “Piccolo is a small, extremely fast XML parser for Java,” 2006,
http://piccolo.sourceforge.net/.

[17] Xerces-J, “Xerces2 Java Parser 2.9.0 Release,” 2006, http://xerces.
apache.org/xerces2-j/.

[18] M. R. Head and M. Govindaraju, “Parallel Processing of Large-Scale
XML-Based Application Documents on Multi-Core Architectures with
Piximal,” in IEEE Fourth International Conference on eScience, Decem-
ber 2008, pp. 261–268.

[19] W. Lu, K. Chiu, and Y. Pan, “A Parallel Approach to XML Parsing,”
in 7th IEEE/ACM International Conference on Grid Computing (Grid

2006), 2006, pp. 223–230.
[20] Y. Pan, Y. Zhang, K. Chiu, and W. Lu, “Parallel XML Parsing Using

Meta-DFAs,” in IEEE Third International Conference on eScience and

Grid Computing, December 2007, pp. 237–244.
[21] M. R. Head and M. Govindaraju, “Performance Enhancement with Spec-

ulative Execution based Parallelism for Processing Large-scale XML-
based Application Data,” in HPDC ’09: Proceedings of the 18th ACM

international symposium on High performance distributed computing.
New York, NY, USA: ACM, 2009, pp. 21–30.

[22] Expert Protein Analysis System, “SwissProt curated protein se-
quence database,” http://www.cs.washington.edu/research/xmldatasets/
www/repository.html.

