
Configuring a MapReduce Framework for Dynamic

and Efficient Energy Adaptation

Jessica Hartog, Zacharia Fadika, Elif Dede, Madhusudhan Govindaraju

Department of Computer Science, State University of New York (SUNY) at Binghamton
jhartog1@binghamton.edu, zfadika@cs.binghamton.edu, edede1@binghamton.edu, mgovinda@cs.binghamton.edu

Abstract—MapReduce has become a popular framework for
Big Data applications. While MapReduce has received much
praise for its scalability and efficiency, it has not been thoroughly
evaluated for power consumption. Our goal with this paper is to
explore the possibility of scheduling in a power-efficient manner
without the need for expensive power monitors on every node.
We begin by considering that no cluster is truly homogeneous
with respect to energy consumption. From there we develop a
MapReduce framework that can evaluate the current status of
each node and dynamically react to estimated power usage. In
so doing, we shift power consumption work toward more energy
efficient nodes which are currently consuming less power. Our
work shows that given an ideal framework configuration, certain
nodes may consume only 62.3% of the dynamic power they
consumed when the same framework was configured as it would
be in a traditional MapReduce implementation.

I. INTRODUCTION

MapReduce was originally designed for a cluster of com-

modity machines [1], and popular implementations such as

Hadoop [2] see better performance in a homogeneous en-

vironment. Many frameworks assume that workers complete

their jobs at the same time and with approximately the same

cost per node. As not all clusters are homogeneous, Hadoop

has a ”straggler” mechanism through which it preemptively

re-schedule jobs that were assigned to nodes that are not

producing results as quickly as other nodes. Zaharia et al. [3]

and Xie et al. [4] show this mechanism to be insufficient in

heterogeneous clusters, as it struggles to balance the workload

when there are several slow nodes in the cluster.

When considering energy efficiency we find that a cluster

cannot be completely homogeneous. Machines vary subtly

by: amount of thermal paste on the processor, fan speed,

fan size, location in proximity to a cooling unit, and heat

sync efficiency. These variations mean that some machines

may produce higher temperatures than others even when

performing the same work on the same data. This requires

that some machines receive additional cooling compared to

another machine with the same specifications. This translates

to a larger energy demand in machines that run at higher

CPU temperatures. In the converse, we know that performing

additional computations and data loads requires additional

work; in turn requiring additional power. A motivating factor

in our work is that our homogeneous cluster is heterogeneous

with respect to power consumption and in order to combat

this we need a MapReduce framework that can dynamically

schedule work based upon power consumption of an individual

node.

This paper makes several contributions. We quantify the

relationship between CPU temperature and energy consump-

tion, and show that CPU temperature is a reliable indicator

of current power consumption with respect to a single worker

node. Utilizing this, we design and implement a MapReduce

framework that dynamically schedules jobs using CPU temper-

ature as a metric to estimate power use. We test various aspects

of our framework for their impact on energy consumption and

show that through scheduling we can reduce the amount of

additional power needed by 37.7% on individual nodes when

compared to our framework utilizing methods typical of other

MapReduce implementations.

II. RELATED WORK

As the MapReduce community has grown, so has the

amount of work dedicated to energy efficient MapReduce

implementations.

In GreenHDFS [5] the MapReduce cluster is separated into

Hot and Cold zones. Nodes in the Hot zone are frequently

accessed because they host popular data and consist of high

power, high performance CPUs. Nodes in the Cold zone are

infrequently accessed as they host unpopular data and are

energy-conserving nodes. GreenHDFS uses the underutiliza-

tion of nodes in the cluster to increase utilization in the

Hot zone and aggressively shutdown components to combat

idleness in the Cold zone, thus producing energy savings.

Leverich and Kozyrakis [6] approach conserving power in

Hadoop Clusters by utilizing Hadoop’s replication strategy to

produce a Covering Subset (CS) of the cluster that contains at

least one replica of each data-block. This allows nodes not in

the CS to be disabled to conserve power. Lang and Patel [7] re-

interpret this same problem, but instead of leaving the cluster

online at all times with some nodes sleeping, they consider

what would happen if the cluster was asleep until a job was

queued. Both [6], [7] discover considerable power savings. The

drawback of the approaches set forth in [5]–[7] is the coupling

of the file system and the MapReduce framework. This does

not allow for utilization of forthcoming green distributed file

systems and results in overhead that decreases efficiency in

terms of both power and turnaround time. In our previous



work MARIANE [8] we further discuss the reasoning behind

the de-coupling of the filesystem and the framework.

Chen et al. [9] test HDFS and how replication, block

size, and file size affect energy efficiency. [9] concludes that

where reliable storage systems, separate from HDFS, are

deployed alongside Hadoop, replication should be set to 1,

as the replication and shuffling mechanisms utilized by HDFS

unnecessarily consume power in this case. In our case, we

require a reliable storage system to use our framework, thus

allowing for power conservation beyond what Hadoop may

achieve as it wastes power managing various aspects of HDFS.

Wirtz and Ge [10] analyze the use of Dynamic Voltage

and Frequency Scaling (DVFS) in a homogeneous cluster

in order to improve energy efficiency. They claim that a

power-aware cluster is defined by the number of compute

nodes and the number of processing cores per node, together

with the frequency of the processor cores. We find that this

simplification of the cluster fails to take into account hetero-

geneity and elasticity. Assuming homogeneity also precludes

the possibility of different machines being added to an already

existing cluster at a later date, the creation of an ad hoc

MapReduce cluster, and reduces the efficiency of a shared

cluster. Additionally, allowing multiple jobs to execute on the

same machine can cause contention for shared resources and

create slow nodes. Related to this, Chen et al. [9] discovered

that slow nodes need to either be removed or assigned less

work in order to reduce power consumption when the speedup

provided by adding the node is not enough to offset the power

penalty for adding the node. Our framework addresses both

of these problems by splitting the job into m tasks, where m

is significantly less than the number of worker nodes. Each

worker node is then assigned one task. Faster nodes request

additional tasks once their initial task is completed. If new

machines are added mid-execution, they can request some of

the remaining tasks from the queue.

Energy-Proportional Computing [11] states that we should

consider induced energy difference since idle power dominates

total power consumption, and was used as a metric for

determining energy efficiency in [7], [9], [10]. Chen et al. [9]

also suggest that in analyzing an energy efficient MapReduce

implementation multiple metrics should be used, including,

but not limited to: finishing time, energy, and power. We will

use turnaround time, and power consumption when reporting

the results of our experiments. [10] collected data for Matrix

Multiplication, CloudBurst, and Sort to determine the energy

efficiency of their framework; [9] also used Sort for this

purpose. These three benchmarks serve to show that there are

different types of MapReduce workloads, and so any decision

regarding scheduling on a framework must work for various

types of MapReduce workloads.

III. PRELIMINARY FINDINGS

In order to schedule for energy, we need to find a way to

quantify the energy usage of a node in a relatively efficient

manner. To that end, we need to find a metric through which

there is a strong correlation to power consumption. Ideally

this measurement would not result in a need to affix external

hardware monitors (such as power meters) to each of the nodes

in a cluster, as this is cost in-efficient and not practical for large

clusters. We consider CPU temperature as such a metric.

To determine whether or not CPU temperature is a viable

metric for our purposes, we needed to test for a reasonable cor-

relation between CPU temperature and energy consumption.

On the surface we feel that these two measurements should

be correlated since more work requires more power, and work

generates heat on the chip. In order to test this assumption we

designed several experiments. Our experiments were carried

out on a machine with the following configuration: Intel Xeon

CPU E5320 @ 1.86GHz with a 8MB L2 Cache running 64-bit

Linux 2.6.32.

We ran tests utilizing the Great Internet Mersenene Prime

Search program mprime [12]. The aspect of mprime that we

relied on for this testing was the torture testing. The torture

tests stress the system in three different ways, as per the

program documentation.

Test 1: Stresses the FPU with minimal testing of RAM as

all data fits in the L2 cache.

Test 2: Stresses the FPU and some RAM, consumes maxi-

mum heat and power.

Test 3: A combination of tests 1 and 2, that balances the

type of stress between resources, stressing the FPU and lots

of RAM.

It was necessary to stress these various components of the

system as we are aware that there is heterogeneity amongst

MapReduce workloads. Some workloads are I/O intensive [13]

while others are CPU intensive [10]. As such, in addition

to using these three mprime torture tests, we developed two

different methods of gathering data to help simulate variability

within a given workload.

Stress: Iterate through a loop while performing floating

point operations. We take 1000 total readings of CPU temper-

ature and system power throughout, with measurements taken

back to back. This simulates an intensive workload, especially

when run in conjunction with mprime torture testing.

Temp: Iterate through a loop while performing floating op-

erations, and take 100 measurements of both CPU temperature

and system power. Checkpoints in the loop indicate when

measurements should be taken. This produces the effect of

pausing briefly between readings to allow the temperature to

drop back down. This simulates running a variable intensity

workload.

The results of our tests are shown in Figure 1 and help

us to identify a correlation between temperature and power

consumed on an individual node. The bar labeled ’test1’ shows

a Pearson correlation coefficient of 0.711 when considering

all data gathered running Test 1 for mprime, regardless of

collection method. Similarly, the bars labeled ’test2’ and

’test3’ show a coefficient of 0.50 and 0.81 on data gathered

while running Test 2 and Test 3 for mprime respectively. The

bar labeled ’simple’ shows a Pearson correlation coefficient

of 0.36 when considering all data collected without the stress

induced by mprime. The bars labeled ’temp’ and ’stress’





This process repeats as long as there is work to be done.

Once all work has been assigned, the fault tolerance module

begins work and distributes jobs without regard to temperature

of a node. Note that this trade-off is made to preserve fault

tolerance; without it a task may get stuck waiting for nodes

to cool down and the job may never finish. Since there are

user-defined parameters in this implementation, we will first

discuss the impact of each of these parameters, beginning with

the boundary temperature, then moving on to number of tasks

assigned to the cluster.

V. IMPLEMENTATION

We designed our MapReduce framework so as to exploit

the implicit heterogeneity of some MapReduce clusters, and

in order to accomplish this we relied on two user-defined

parameters. The first such parameter is the boundary temper-

ature, which is used to determine the temperature at which

a node should no longer be considered for rescheduling. The

second such parameter is the number of tasks that are created

from a single MapReduce job; with each task corresponding

to a subset of the input file. User-defined parameters lend

to variability in the performance results of our MapReduce

implementation. We first discuss the impact of each of these

parameters, beginning with the boundary temperature, then

moving on to the number of tasks assigned to the cluster.

VI. EXPERIMENTAL SETUP

We collect power data for one node in our cluster using a

Watts Up? .Net power meter. We do this as we make local

decisions regarding energy consumption and so as few as one

node may have any power consumption changes. In an effort

to determine the actual realized power savings, we run tests

designed so that the single node takes on opposite sides of

saving and consuming more energy. As described in [9], [15]

the energy level of the Master node is not measured, because

the Master node contributes approximately the same amount

of energy to the cluster, regardless of the cluster’s size. These

works also do not report power consumption on behalf of the

network switch because when a cluster is not isolated such

results could corrupt the data if other machines are utilizing

the network.

All nodes in the cluster ran 64-bit Linux 2.6.32. Our Master

node had an Intel Xeon CPU 5150 @ 2.66GHz with a 4MB

L2 Cache.

Similarly all but one worker node also ran on an Intel Xeon

CPU 5150 @ 2.66GHz with a 4MB L2 Cache.

Our exception was the metered worker node, which had an

Intel Xeon CPU E5320 @ 1.86GHz with a 8MB L2 Cache.

All nodes in the cluster have the lm-sensors [16] package

installed in order to be able to determine the CPU temperature

of each node. It is important to note that although 80% of the

worker nodes have the same configuration, two of the non-

metered workers ran with a higher average CPU temperature

than the others. One such node averaged approximately 100◦C,

and the other such node averaged approximately 115◦C. The

data is shared between nodes using NFS, hosted on a local

Fig. 2. Execution Time in Seconds is presented on the Y-axis and File
Size in Bytes on the X-axis. The graphs are differentiated by the number of
tasks with respect to the number of workers. This shows that as the number
of tasks increases, the boundary temperature plays a more important role in
determining execution time.

server, but the framework makes no specific assumptions and

any shared filesystem could be used. Looking forward, this

kind of flexibility is necessary as research in the area of

green distributed file systems is in progress [17], [18]. As

breakthroughs are made, our system will be adaptable and able

to realize the changes necessary to find power savings. Each of

our experiments used the traditional WordCount application.

The average of all iterations of a given experiment is reported.

VII. PARAMETER EXPLORATION

In this section we describe the results of the experiments

performed on the cluster as described in Section V.

A. Boundary Temperature Sensitivity

Based upon the way our framework is designed, the tem-

perature that is used to decide whether or not a node is able to

take on more work is a parameter that can limit performance.

In light of this, we perform all tests with three different

temperatures as our boundary temperature. As was described

in Section V, 20% of the worker nodes had a tendency to

run at a higher temperature than the other 80%. As such, the

boundary temperatures we selected were 80, 90, 100, 110,

120, and 130◦C. However, for the sake of brevity, we will

only discuss data from 80, 110, and 120◦C as they correspond

to 60%, 80% and 100% reschedulable workers and the results

for 90 and 100◦C, mimic those of 80◦C, similarly for 120 and

130◦C.

The graphs in Figure 2 show that as the boundary tem-

perature decreases, the execution time increases in nearly all





Fig. 5. Here, the X-axis displays the number of jobs as a percentage of the
nodes in the cluster while Y-axis of both graphs represent the execution time
of the MapReduce job in seconds. The results of three different boundary
temperatures are displayed.

fastest and slowest nodes completing a job is less than the

the time taken to execute one job. However, at the task/node

ratio of three, the tasks are shorter because there are more of

them, and it is now more likely that the delay between the

fastest and slowest nodes completing a job is more than it

takes to execute one job. Note here that our cluster is only

moderately heterogeneous, and that more heterogeneity would

show a vast change in the effectiveness of a given task/node

ratio. In the future, we would like to assign a formulaic degree

of heterogeneity to a cluster, and determine the number of

tasks necessary to effectively balance power and speed.

We can also see from both sets of graphs that the threshold

temperature value is a contributing factor to execution time

as the number of splits increases. This makes sense as a

MapReduce job can complete only as fast as the slowest

node completes the job. For this reason a decrease in the

boundary temperature results in an increase in the execution

time. Note that when the boundary is low enough, several

nodes are effectively removed from the cluster and so the

remaining nodes become slowed down by having to do a

larger percentage of the work. However, our cluster is only

moderately heterogeneous and we hope that with a larger, more

heterogeneous setup, lower boundary temperatures may not as

dramatically shift execution time.

One feature that defines each of these graphs is the relative

smoothness of each of the temperature plots. In the 500MB

graph, the 110◦C plot has the least variation in the slope of its

various segments, whereas in the 1GB graph, the 120◦C plot

has the least variation in the slope of its segments. The sum of

Fig. 6. The total change in watts of energy consumed is presented on the
Y-axis and the number of jobs available with respect to the number of worker
nodes in the cluster on the X-axis. The data for three different boundary
temperatures in our framework are presented.

the variance in the slopes of all segments in the 500MB file is

194.5, whereas the same value for the 1GB file experiments

is 731.9. This means that as the input size grew by a factor

of two, the variance grew by 376.3%, nearly a factor of four.

With respect to the 500MB file experiments, we see that our

results are more consistent (independent of the number of file

splits) if we leave some of our thermally excited nodes out of

rescheduling. The data from the 1GB file experiments tells us

that as file size increases the number of splits becomes increas-

ingly important. The results of subsection VII-A together with

subsection VII-B indicate that as the number of tasks increases

and the data size grows the framework becomes less dependent

on the boundary temperature, indicating that the framework is

dynamically adapting to the cluster configuration.

C. Energy Savings

As was discussed in Section V for our experiments we col-

lected data on a single worker node as we made local decisions

regarding job scheduling and hope that such decisions will

translate to global power savings. While our present experi-

ments do not consider the power consumption of the entire

cluster, we have plans for future experiments that consider the

power consumption problem at various granularities including

individual nodes, a proper subset of worker nodes, all worker

nodes and the entire cluster. At present, these experiments

serve to act as a proof of concept that our decisions regarding

temperature adjust the temperature and power consumption

of individual worker nodes, with cluster power savings being

quantified in future work.



Consider the results of our power analysis on a single node

as presented in Figure 6. We present our data for only the

most extreme cases within the bounds of our experiments with

file sizes of 250MB and 2GB, and only the additional power

(total power - idle power) is presented for reasons discussed

in [11]. The trends we see in the presented data apply to the

500MB and 1GB file sizes as well. As with several other

trends, we see that both the boundary temperature and the

number of splits play an important role in the realized energy

savings. We can see from this node, that as it is not used

for rescheduling when the number of jobs is low, power is

saved over the traditional one task per node approach presented

in MARIANE [8]. We see in the 2GB file case that when

the boundary temperature is 80◦C there are two peaks of

power consumption, and these peaks correspond to when the

node is rescheduled once and twice. When the node is not

rescheduled and the tasks become shorter (the number of splits

increases) our power consumption demands decrease. We see

similar trends in the other boundary temperatures as well,

where the data reaches two local minimums and two local

maximums, with the minimums located just before an extra

task is scheduled, and the maximums occurring just after. Note

that as the number of tasks increases, the disparity between

the minimum and maximum is decreased. Another noteworthy

trend is that compared to the data using the number of splits

and the execution time, more data points have similar values

amongst the various temperature boundaries when change in

power is considered, especially as the file size increases. In

the 250MB example, there are 3 cases where the range of

the values graphed at each temperature falls less than 10%

of the average of those values; this is true of both execution

time and power. In the 2GB example, there are 4 cases where

the range of the values graphed at each temperature falls

less than 10% of the average of those values with respect

to execution time; where there are 6 such cases with respect

to Watts, an 18.18% increase in similar values. This trend

confirms that boundary temperature does affect both the job’s

execution time, and the single node’s power consumption. We

also see that the single node’s consumption is only increased

when the boundary temperature forces the node to take on

additional tasks. Our future work will more completely explore

this relationship. Our results indicate that there is some balance

achievable between power savings and execution time by

adjusting the boundary temperature, namely that even though

execution time varies with boundary temperature, we see that

the power consumption is 18.18% more consistent.

VIII. COMPARISON WITH MARLA

As performance is necessary for any successful MapReduce

framework, we will take this section to discuss the effects

that scheduling for energy awareness has on performance. It is

expected that energy savings will result in performance loss.

However, as was pointed out in [7] the formula for power

consumption is Power = Energy ∗ T ime. Due to this fact,

the longer a machine is active, the more power it consumes.

This means that even while scheduling for energy, perfor-

Fig. 7. Here the number of splits as a percentage of nodes in the cluster is
on the X-axis, with execution time in seconds on the Y-axis. The results for
MARLA and our framework with a boundary of 110◦C are displayed.

mance still remains a priority. In this section we will discuss

the performance impacts of setting various elements of our

framework, and compare this framework to another framework

MARLA, which is also based upon MARIANE. The primary

difference between our framework and MARLA is that we

have scheduled this framework for energy awareness, whereas

MARLA schedules for performance in heterogeneous clusters

alone. Comparing our framework to MARLA is sufficient

as MARLA has been compared to Hadoop and Mariane in

our previous work [14]; showing improved performance in

heterogeneous clusters.

Recall from Section III that a framework that works well in

a heterogeneous environment will be better suited to energy

adaptive scheduling, as no cluster is truly homogeneous.

Our results in Figure 7 indicate that our only performance

loss over MARLA occurs when the number of splits and

the runtime length of each split precludes some nodes from

being rescheduled due to their temperature variations. For this

reason, we can see why it takes our framework longer than

it takes MARLA to complete jobs in some instances. Recall

from the previous section that this same scenario also changes

the power consumption of an individual node. Note that if our

framework is properly tuned to have the appropriate boundary

temperature for the given cluster, we can realize turnaround

times on par with those discussed in [14]. Since we know that

our execution times are similar to those of MARLA, we can

see that power savings on the cluster level may be achieved.

We saw that the results of Figure 7 indicate that the

turnaround times of our framework are similar in many in-

stances to those of MARLA. Thus, if we realize power savings

on a single node between our framework and MARLA, we

should be able to realize power savings throughout the cluster



Fig. 8. Here, the number of splits as a percentage of nodes in the cluster is
on the X-axis, and the change in energy consumption in watts is on the Y-
axis. The results for MARLA and our framework with a boundary of 110◦C
are displayed.

given the right configuration of our parameters. We present

our results in Figure 8. When the file size is small, e.g. in the

case of the 250MB file size, our power consumption closely

follows the trends and values of the unmodified MARLA

framework. Note that the changes in power consumption

occur in our framework occur before they do in MARLA

as we eliminate one node from the cluster as our boundary

temperature was 110◦C. In the best configuration, we see

that our node consumes only 88.85% of the additional power

that it consumed while running on MARLA. Note also that

when the file size is large we see a much smoother trend of

power consumption in our framework than we do in MARLA.

While our framework continues to attain its minimum and

maximum power consumption with a smaller number of tasks

than MARLA, we see that in the best configuration our node

consumes only 63.96% of the additional power consumed

while running MARLA. So we can see 11.15% and 36.04%

power savings in non-idle power is realized for the 250MB

and 2GB files respectively. As a result we can say that our

framework provides a method for dynamically scheduling

MapReduce applications for energy.

IX. CONCLUSIONS AND FUTURE WORK

In our work we designed and implemented a MapReduce

framework whose scheduling is dynamic and energy aware.

Our paper offers the following contributions:

• Established a positive correlation between CPU temper-

ature and power consumption.

• Designed and implemented a MapReduce framework that

is able to utilize the correlation between power and CPU

temperature for scheduling.

• Tested various user-defined characteristics of our frame-

work in an effort to determine the effect each of them

has on the success of our framework with respect to both

turnaround time and power consumption of an individual

node.

• Shown potential for a MapReduce framework that can

schedule in an energy-aware manner without having to

rely on expensive power hardware attached to each node.

In our future work we plan to:

• Test this framework on larger clusters, both heteroge-

neous and homogeneous, for performance as well as

power consumption.

• Study the optimal way to split input given a cluster’s

heterogeneity, such that we provide the most power

savings.

• Test other scheduling metrics independent from and along

side this approach.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] Apache Hadoop. [Online]. Available: http://hadoop.apache.org
[3] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,

“Improving mapreduce performance in heterogeneous environments,” in
OSDI, 2008, pp. 29–42.

[4] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and
X. Qin, “Improving mapreduce performance through data placement in
heterogeneous hadoop clusters,” in IPDPS Workshops, 2010, pp. 1–9.

[5] R. T. Kaushik and M. Bhandarkar, “Greenhdfs: Towards an energy-
conserving, storage-efficient, hybrid hadoop compute cluster,” in Pro-

ceedings of the 2010 International Conference on Power Aware Com-

puting and Systems, Vancouver, BC, Canada, 2010, pp. 1–9.
[6] J. Leverich and C. Kozyrakis, “On the energy (in)efficiency of hadoop

clusters,” in ACM SIGOPS Operating Systems Review, vol. 44, no. 1,
2010, pp. 61–65.

[7] W. Lang and J. M. Patel, “Energy management for mapreduce clusters,”
in Proceedings of the VLDB Endowment, vol. 3, no. 1, 2010, pp. 129–
139.

[8] Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan, “Mariane:
Mapreduce implementation adapted for hpc environments,” Grid Com-

puting, IEEE/ACM International Workshop on, vol. 12, 2011.
[9] Y. Chen, L. Keys, and R. H. Katz, “Towards energy efficient mapreduce,”

Electrical Engineering and Computer Science Department, University of
California at Berkeley, Tech. Rep. UCB/EECS-2009-109, 2009.

[10] T. Writz and R. Ge, “Improving mapreduce energy efficiency for
computation intensive workloads,” in Green Computing Conference and

Workshops (IGCC), 2011 International, 2011, pp. 1–8.
[11] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-

puting,” Computer, vol. 40, no. 12, pp. 33–37, 2007.
[12] PrimeNet Benchmarks (GIMPS). [Online]. Available: http://www.

mersenne.org/
[13] M. C. Schatz, “Cloudburst: Highly sensitive read mapping with mapre-

duce,” in Bioinformatics, vol. 25, no. 11, 2009, p. 1363 1369.
[14] Z. Fadika, E. Dede, J. Hartog, and M. Govindaraju, “Marla: Mapreduce

for heterogeneous clusters,” vol. 12, 2012.
[15] Y. Chen, A. S. Ganapathi, A. Fox, R. H. Katz, and D. A. Patterson,

“Statistical workloads for energy efficient mapreduce,” Electrical Engi-
neering and Computer Science Department, University of California at
Berkeley, Tech. Rep. UCB/EECS-2010-6, 2010.

[16] Lm-sensors- Linux Hardware Monitoring. [Online]. Available: http:
//lm-sensors.org/

[17] T. Kosar and M. Livny, “A framework for reliable and efficient data
placement in distributed computing systems,” Journal of Parallel and

Distributed Computing, vol. 65, no. 10, pp. 1146 – 1157, 2005.
[18] Z. Zong, M. Briggs, N. O’Connor, and X. Qin, “An energy-efficient

framework for large-scale parallel storage systems,” in Parallel and

Distributed Processing Symposium, 2007, pp. 1–7.


