Aligned Virtual Coordinates for Greedy Routing in WSNs

Ke Liu and Nael Abu-Ghazaleh
Dept. Of Computer Science
SUNY Binghamton

MASS, October 12, 2006
Outlines

- Motivation of Virtual Coordinates System (VCS)
- Brief introduction to GPSR/GFG (Geographic Routing)
- Anomalies in VCS
- Intuition and Design of Aligned VCS
- Performance evaluation
- Conclusion
Motivation of VCS

• Geographic Routing Efficient for WSNs
 – *Stateless*: no state information (info of sink and path)
 – Localized Interactions (only info of one-hop neighbors)

• GR suffers from *Voids* and Localization Errors

• Virtual Coordinate Systems (based on connectivity info.)
 – Better? Based on partial connectivity info.
 * We show they suffer their own anomalies
 * Quantization Error is a factor
GPSR/GFG: Greedy Forwarding (GF)
GPSR/GFG: GF may fail
Distance Map Show

Distance Map of a physical hole

IEEE MASS 2006, October 12, 2006
Virtual Coordinates For Geometric Routing

- Several nodes are elected to be anchors: one node per dimension;

- Anchors broadcast Virtual Coordinate beacons;

- Each other node forwards beacons, incrementing distance;

- Each node obtains a VC based on received beacon values;

- Distance measured in number of hops: integral value;
Argued VCS (VCap)

- 3 anchors (a 3D VCS) are enough to map the physical coordinates

- VC Zone can be avoided if density is high enough

 VC Zone: nodes with the same VC values

- VC Zones are connected with 3 anchors adapted (3D VCS)

- Void (anomaly) ratio is reduced much
Anomalies found in VCS

- 3D VCS is not enough to map
- VC zones may be disconnected in 3D VCS
- Anomaly ratio may be increased by VCS
 - More routing (greedy forwarding) anomalies happen
Anomalies in 3D VCS

Extended & Disconnected VC Zone Problems

Details can be found in previous work
Anomalies in 3D VCS (virtual voids)

Virtual voids even without physical void
4D VCS? or Different Distance measurement?

- 4D VCS was proposed too (LCR)

- Anomalies in 4D VCS were found in LCR; solution requires each data packet records each node along its path during forwarding

- Different distance measurement was prosposed (BVR), Manhattan style distance, indicated as a better solution
Existing solutions do not reduce anomalies

Eclidean Distance in 4D VCS

Manhattan Distance in 4D VCS

IEEE MASS 2006, October 12, 2006
Reducing Anomalies– Greedy Forwarding Better

In terms of Average Path Stretch

<table>
<thead>
<tr>
<th>Density Neighbors #</th>
<th>Optimal</th>
<th>GF</th>
<th>Perimeter Routing</th>
<th>CR</th>
<th>BVR BT</th>
<th>LCR BT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SP</td>
<td>GeoCS</td>
<td>4D VCS</td>
<td>4D AVCS (d 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.92</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>16.9200</td>
<td>2.1903</td>
</tr>
<tr>
<td>7.76</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>13.1800</td>
<td>2.0996</td>
</tr>
<tr>
<td>11.60</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>18.0365</td>
<td>2.1875</td>
</tr>
<tr>
<td>19.13</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0494</td>
<td>1.0073</td>
<td>23.7324</td>
<td>2.1411</td>
</tr>
<tr>
<td>26.57</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0251</td>
<td>1.0010</td>
<td>29.7087</td>
<td>2.1459</td>
</tr>
<tr>
<td>33.94</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0409</td>
<td>1.0050</td>
<td>31.7657</td>
<td>2.1609</td>
</tr>
<tr>
<td>44.84</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0545</td>
<td>1.0035</td>
<td>37.4030</td>
<td>2.1512</td>
</tr>
<tr>
<td>62.66</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0850</td>
<td>1.0100</td>
<td>41.9031</td>
<td>2.1342</td>
</tr>
<tr>
<td>73.17</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0926</td>
<td>1.0074</td>
<td>46.2990</td>
<td>2.1311</td>
</tr>
</tbody>
</table>

Observation: if we can increase the ratio of greedy forwarding, we may improve the routing performance: either path stretch or overhead

IEEE MASS 2006, October 12, 2006
Why Anomalies in VCS?

- Virtual Coordinate values are **integral**: quantization error or noise increases requiring more precise values for VCs

- No discrimination among nodes in range: forwarding dilemma requiring in range discrimination

- Mapping from a continuous space to a **discrete** space: less forwarding candidates requiring **continuous** space
Node A and B are different as forwarding nodes, since with different regions of neighbors in their range.
Aligned VCS (AVCS)

- **AVC of a given node** is computed as a function of its VC and neighbors VC.

- Simplest value: *average* of the neighbors’ integral virtual coordinate values.

- AVC coordinates with depth d are decided by its neighbors aligned virtual coordinates with depth $d - 1$.

- Original integral virtual coordinates are AVC with depth 0.
AVCS (cont’d)

Forwarding Voids in 4D VCS

Aligned VCS without forwarding voids
Simulation

- Metrics:
 - **Greedy Ratio**: how many paths do not face any anomalies
 - **Path Stretch**: the average length of all paths (both GF and CR) compared to optimal solution (SP)

- Simulator:
 - **NS-2**: for network with less than 400 nodes
 - **Customer**: for network with 1600 or 2500 nodes

- Based more than 30 networks used for each scenarios
AVCS Performance: Greedy Forwarding Ratio

IEEE MASS 2006, October 12, 2006
AVCS Performance: Greedy Forwarding Ratio over BVR

IEEE MASS 2006, October 12, 2006
AVCS Performance: Path Stretch

IEEE MASS 2006, October 12, 2006
AVCS Performance: Path Stretch over BVR

IEEE MASS 2006, October 12, 2006
AVCS Performance: Depth

IEEE MASS 2006, October 12, 2006
AVCS Performance: GF ratio with random deployment

IEEE MASS 2006, October 12, 2006
AVCS Performance: Path stretch with random deployment

IEEE MASS 2006, October 12, 2006
Conclusions

- Greedy Forwarding performs much better than complementary routing phase;

- Virtual Coordinates System with simple integral values create more anomalies than Geometric Routing;

- Aligned VCS help reduce anomalies, enhancing performance;

- Geometric Routing in VCS (AVCS) can provide equivalent, or even better performance, than geographic routing;

- Further, stateless routing can approach that of “stateful” routing protocols, such as shortest path routing.
Thank You!

Code is available on my website
http://www.cs.binghamton.edu/~kliu

Questions?
Back up : Multiple Physical voids

IEEE MASS 2006, October 12, 2006