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Abstract

This paper presents a detailed study of fairness in cache shar-
ing between threads in a chip multiprocessor (CMP) architecture.
Prior work in CMP architectures has only studied throughput op-
timization techniques for a shared cache. The issue of fairness in
cache sharing, and its relation to throughput, has not been stud-
ied. Fairness is a critical issue because the Operating System (OS)
thread scheduler’s effectiveness depends on the hardware to pro-
vide fair cache sharing to co-scheduled threads. Without such hard-
ware, serious problems, such as thread starvation and priority in-
version, can arise and render the OS scheduler ineffective.

This paper makes several contributions. First, it proposes and
evaluates five cache fairness metrics that measure the degree of
fairness in cache sharing, and shows that two of them correlate
very strongly with the execution-time fairness. Execution-time fair-
ness is defined as how uniform the execution times of co-scheduled
threads are changed, where each change is relative to the execu-
tion time of the same thread running alone. Secondly, using the
metrics, the paper proposes static and dynamic L2 cache partition-
ing algorithms that optimize fairness. The dynamic partitioning
algorithm is easy to implement, requires little or no profiling, has
low overhead, and does not restrict the cache replacement algo-
rithm to LRU. The static algorithm, although requiring the cache to
maintain LRU stack information, can help the OS thread scheduler
to avoid cache thrashing. Finally, this paper studies the relation-
ship between fairness and throughput in detail. We found that op-
timizing fairness usually increases throughput, while maximizing
throughput does not necessarily improve fairness. Using a set of
co-scheduled pairs of benchmarks, on average our algorithms im-
prove fairness by a factor of 4 � , while increasing the throughput
by 15%, compared to a non-partitioned shared cache.

1. Introduction

In a Chip Multi-Processor (CMP) architecture, the L2
cache and its lower memory hierarchy components are typ-
ically shared by multiple processors to maximize resource
utilization and avoid costly resource duplication [9]. Un-
fortunately, the cache contention due to cache sharing be-
tween multiple threads that are co-scheduled on different
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CMP processors can adversely impact throughput and fair-
ness. Throughput measures the combined progress rate of
all the co-scheduled threads, whereas fairness measures how
uniformly the threads are slowed down due to cache sharing.

Prior work in CMP architectures has ignored fairness
and focused on studying throughput and its optimization
techniques on a shared L2 cache [19, 10]. In Simultane-
ous Multi-Threaded (SMT) architectures, where typically
the entire cache hierarchy and many processor resources are
shared, it has been observed that throughput-optimizingpoli-
cies tend to favor threads that naturally have high IPC [15],
hence sacrificing fairness. Some studies have proposed met-
rics that, if optimized, balances between throughput and fair-
ness [12, 15].

This paper studies fairness in L2 cache sharing in a CMP
architecture and its relation to throughput. In contrast to
prior work in CMP and SMT, we pursue fairness as the main
(and separate) optimization goal. Fairness is a critical as-
pect to optimize because the Operating System (OS) thread
scheduler’s effectiveness depends on the hardware to pro-
vide fairness to all co-scheduled threads. An OS enforces
thread priorities by assigning timeslices, i.e., more times-
lices to higher priority threads. However, it assumes that in a
given timeslice, the resource sharing uniformly impacts the
rates of progress of all the co-scheduled threads. Unfortu-
nately, we found that the assumption is often unmet because
a thread’s ability to compete for cache space is determined
by its temporal reuse behavior, which is often very different
compared to that of other threads which are co-scheduled
with it.

When the OS’ assumption of fair hardware is not met,
there are at least three problems that can render the OS
scheduler ineffective. The first problem is thread starva-
tion, which happens when one thread fails in competing for
sufficient cache space necessary to make satisfactory for-
ward progress. The second problem is priority inversion,
where a higher priority thread achieves a slower forward
progress than a lower priority thread, despite the attempt
by the OS to provide more timeslices to the higher priority
thread. This happens when the higher priority thread loses



to the lower priority thread (or other threads) in competing
for cache space. To make things worse, the operating system
is not aware of this problem, and hence cannot correct this
situation (by assigning more timeslices to the higher prior-
ity thread). The third problem is that the forward progress
rate of a thread is highly dependent on the thread mix in a
co-schedule. This makes the forward progress rate difficult
to characterize or predict, making the system behavior un-
predictable. Unfortunately, despite these problems, cache
implementations today are thread-blind, producing unfair
cache sharing in many cases.

To avoid these problems, ideally the hardware should pro-
vide fair caching, i.e. a scheme that guarantees that the
impact of cache sharing is uniform for all the co-scheduled
threads. With fair caching, the OS can mostly abstract away
the impact of cache sharing, and expect priority-based times-
lice assignment to work as effectively as in a time-shared
single processor system.

This paper makes several contributions. First, it proposes
and evaluates five cache fairness metrics that measure the
degree of fairness in cache sharing, and shows that two of
them correlate very strongly with the execution-time fair-
ness. Execution-time fairness is defined as how uniform the
execution times of co-scheduled threads are changed, where
each change is relative to the execution time of the same
thread running alone. Secondly, using the metrics, the pa-
per proposes static and dynamic L2 cache partitioning al-
gorithms that optimize fairness. The dynamic partitioning
algorithm is easy to implement, requires little or no profil-
ing, has low overhead, and does not restrict the cache re-
placement algorithm to LRU. The static algorithm, although
requiring the cache to maintain LRU stack information, can
help the OS thread scheduler to avoid cache thrashing. Fi-
nally, this paper studies the relationship between fairness
and throughput in detail. We found that optimizing fairness
usually increases throughput, while maximizing through-
put does not necessarily improve fairness. This is because
throughput may improve at the expense of fairness, for ex-
ample by favoring some threads whose throughput is easy
to improve, over others. Using a set of co-scheduled pairs of
benchmarks, our fair caching algorithms improve fairness by
4 � , while increasing the throughput (combined instructions
per cycle) by 15%, compared to a non-partitioned shared
cache. The throughput improvement is slightly better than
a scheme that minimizes the total number of cache misses as
its main objective.

The rest of the paper is organized as follows. Section 2
discusses fairness in cache sharing in greater details and
presents our metrics to measure fairness. Section 3 presents
our fair caching algorithms. Section 4 details the evaluation
setup, while Section 5 presents and discusses the evaluation
results. Section 6 describes related work. Finally, Section 7

summarizes the findings.

2. Fairness in Cache Sharing

Cache implementation today is thread-blind, i.e. it ap-
plies the same placement and replacement decisions to any
cache line, regardless of which thread the line belongs to.
To exploit temporal locality in a program, most caches
use a Least Recently Used (LRU) replacement algorithm
or its approximation. Since temporal locality behavior is
application-specific, when two threads from different appli-
cations share a cache, the LRU algorithm tends to favor one
application over the other. This section discusses the im-
pact of unfair cache sharing (Section 2.1), the conditions
in which unfair cache sharing may occur (Section 2.2), and
formally defines fairness and proposes metrics to measure it
(Section 2.3).

2.1. Impact of Unfair Cache Sharing

To illustrate the impact of cache sharing, Figure 1 shows
gzip’s number of cache misses per instruction and instruc-
tion per cycle (IPC), when it runs alone compared to when
it is co-scheduled with different threads, such as applu, apsi,
art, and swim. All the bars are normalized to the case where
gzip is running alone. The figure shows that gzip’s number
of cache misses per instruction increases significantly com-
pared to when it runs alone. Furthermore, the increase is
very dependent on the application that is co-scheduled with
it. For example, while gzip’s cache miss per instruction in-
creases by only

� � when it runs with apsi, it increases by��� � � when it runs with art and � � � � when it runs with swim.
As a result, the IPC is affected differently. It is reduced by
35% when gzip runs with apsi, but reduced by 63% when
gzip runs with art. Although not shown in the figure, art,
apsi, applu, and swim’s cache miss per instruction increases
less than 15% when each of them runs with gzip. This cre-
ates a very unfair cache sharing.
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Figure 1: gzip’s number of cache misses per instruction and
instruction per cycle (IPC), when it runs alone compared to
when it is co-scheduled with another thread on a 2-processor
CMP, sharing an 8-way associative 512-KB L2 cache.

There are several important things to note. In terms of



fairness, gzip’s significant slow down can easily result in
priority inversion. For example, if gzip has a higher pri-
ority than art, for gzip to achieve a higher progress rate, it
has to be assigned more than three times the number of time
slices compared to that assigned to art. Otherwise, to the end
users, gzip may appear to be starved. In terms of throughput,
gzip’s significant slow down reduces the overall throughput
because the utilization of the processor where gzip runs on is
also significantly reduced. Therefore, improving fairness in
cache sharing is likely to also improve the overall throughput
of the system.

Finally, fair caching alone cannot always prevent cache
thrashing. Fair caching merely equalizes the impact of cache
sharing to all the threads. However, it is still possible that
the co-scheduled threads’ working sets severely overflow
the cache and create a thrashing condition. Therefore, al-
though the hardware should provide fair caching, the OS
thread scheduler still needs a tool that can help it to judi-
ciously avoid co-schedules that cause cache thrashing.

2.2. Conditions for Unfair Cache Sharing

To illustrate why some threads such as gzip are prone to
suffer from a large increase in the number of cache misses, it
is important to analyze its temporal reuse behavior, obtained
by stack distance profiling � [13, 2, 19, 11].

Stack Distance Profiling. For an
�

-way associative
cache with LRU replacement algorithm, there are

�����
counters: � ��� �
	 � � � � � �
� � �
��� . On each cache access, one
of the counters is incremented. If it is a cache access to a
line in the ����� position in the LRU stack of the set, ��� is in-
cremented. Note that our first line in the stack is the most
recently used line in the set, and the last line in the stack is
the least recently used line. If it is a cache miss, the line is not
found in the LRU stack, resulting in incrementing the miss
counter � ��� . Stack distance profile can easily be obtained
statically by the compiler [2], by simulation, or by running
the thread alone in the system [19]. It is well known that
the number of cache misses for a smaller cache can be easily
computed using the stack distance profile. For example, for
a smaller cache that has

���
associativity, where

�������
, the

new number of misses can be computed as:

��� �!�#"%$'&)(�* (+
,.- (0/.132 $ , (1)

For our purpose, since we need to compare stack distance
profiles from different applications, it is useful to take the
counter’s frequency by dividing each of the counter by the
number of processor cycles in which the profile is collected
(i.e., �54 �
6 7987;:=<3>�?@> A.B ). Furthermore, we call �54 ��� as the
miss frequency, denoting the frequency of cache misses in2

Also referred to as the marginal gain in [19].

CPU cycles. We also call the sum of all other counters, i.e.C ��.D � �54 � as reuse frequency.
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Figure 2: Stack distance frequency profile of gzip and art
on an 8-way associative 512-KB cache, collected by running
gzip and art alone. The bars are normalized to gzip’s cache
miss frequency ( $FE�&)( bar).

Figure 2 shows the stack distance frequency profiles of
gzip and art. The profiles show that the temporal reuse be-
havior of gzip is such that it reuses many lines that it has
accessed in the past, whereas art only reuses a few most
recently used lines. Therefore, they suffer differently from
L2 cache sharing. For example, if the cache space for art
is reduced by a half, its number of misses will increase by
only 0.1%, whereas gzip’s number of misses will increase by�HG � ! In fact, even a slight reduction in gzip’s cache space
increases its cache misses significantly.

2.3. Defining and Measuring Fairness

To measure fairness, let us first define it. Let I
JLKHJ)� de-
note the execution time of thread � when it runs alone with a
dedicated cache, and I�MON0P � denote its execution time when
it shares the cache with other threads. When there are Q
threads sharing the cache and assuming that the threads are
always co-scheduled for their lifetime, an ideal fairness is
achieved when:R �TSLU 2R#VXWTV 2 "

R �TSLU@YR'VXWTV Y "[Z\ZTZO"
R �TSLU!]R#VXW!V ] (2)

which we refer to as the execution time fairness criteria. The
criteria can be met if, for any pair of threads � and ^ that are
co-scheduled, the following metric ( _ �a`b ) is minimized:

c , de "gf h ,ji h d f , where h , "
R �TSLU ,R'VXWTV , (3)

Obviously, it is difficult to measure I�MONjPO� in reality be-
cause of the lack of reference points in the execution where
the execution time of the shared and dedicated cache cases
can be collected and compared. To enforce fairness, a metric
that is easier to measure, and one that highly correlates with_ b , is needed. Since we deal with an L2 cache sharing pol-
icy, the metric should only be impacted by and dependent on



the L2 cache sharing policy, so that it can be reliably used as
an input to the fair cache sharing algorithms. For example,
instructions per cycle (IPC) is not a good metric for measur-
ing L2 cache sharing fairness because it is highly dependent
on many external factors, such as the available ILP, different
types of processor hazards, branch mispredictions, L1 data
and instruction caches, TLBs, etc. How responsive the IPC
is to the L2 cache sharing policy is very application-specific,
can have a large range of values, and is therefore unreliable.
In addition, IPC is prone to change in response to power sav-
ing techniques, such as frequency and voltage scaling, fetch
gating, etc.

We propose five L2 cache fairness metrics that are di-
rectly related to the L2 cache performance and are insensi-
tive to external factors, while at the same time easy to mea-
sure. Let _ � MOM and _ � MHM P denote the number of misses and
miss rates, respectively. For any pair of co-scheduled threads� and ^ , the following metrics measure the degree of fairness
between a thread pair:

c , d2 " f h ,9i h d f , where h , " c � �!� �TSLU ,c � �!� VXWTV , (4)c , dY " f h ,9i h d f , where h , " c � �!� �TSLU , (5)c , d� " f h ,9i h d f , where h , " c � �!�\U �TSLU ,c � �!�\U VXWTV , (6)c , d� " f h ,9i h d f , where h , " c � �!�\U �TSLU , (7)c , d� " f h ,9i h d f , whereh , " c � �!�\U �TSLU , i c � �@�\U VXWTV , (8)

By minimizing _ � `� , a fair caching algorithm seeks to im-
prove fairness. When there are more than two threads, the
fairness metrics can be summed or averaged over all possible
pairs, and the resulting metric, e.g. _ � 6 C � C ` _ �a`� , be-
comes the target for minimization. Metric _ � tries to equal-
ize the ratio of miss increase of each thread, while _ 	 tries to
equalize the number of misses. Similarly, metric _�� tries to
equalize the ratio of miss rate increase of each thread, while_�� tries to equalize the miss rates. Finally, metric _
	 tries
to equalize the increase in the miss rates of each thread.

Metrics _ 	 and _ � enforce fairness in absolute terms,
that is, the number of misses, or the miss rates under shar-
ing are equalized. They may over-penalize applications with
few misses or low miss rates. In _ � and _ � , the number of
misses and miss rates are normalized by those from a dedi-
cated L2 cache, so that the increase of misses or miss rates is
proportional to ones from the dedicated cache case. The nor-
malization makes sense because, when an application suffers
many misses (or have high miss rates), it is likely that many
of these misses are overlapped with each other. Therefore,
increasing them has a smaller impact on the execution time
of the application, compared to applications with few misses
or low miss rates. Finally, the metric _�	 adjusts the miss
rates by subtracting them with the miss rates on the dedi-
cated cache. At this point, it seems that _ � , _ � , and _ 	 are

better metrics because they enforce fairness in relative terms
with respect to the dedicated cache case.

The remaining issue for the metrics is how well they cor-
relate with the execution time fairness metric _ b (Equa-
tion 3). To find out, we compute the statistical correlation [5]
between _ b and _ � , where � 6 � � � � � � � � � :

$�
@U U�� c ,�� c e�� " $�
���� c ,�� c e��
� � c , � � � c e�� � where (9)

$�
���� c , � c e � " ��� c , c e � i ��� c , � ��� c e �
where ��� _ �� and !"� _ �� denote the standard deviation and
expected value of _ � . Since we are interested in how the L2
cache sharing policy impacts both the execution time fair-
ness metric ( _ b ) and other fairness metrics ( _ � ), we can
obtain one data point for each L2 sharing policy. For ex-
ample, by partitioning the L2 cache at Q different partition
sizes, we obtain Q data points, that can be used to compute�$#OPOP�� _ � � _ b  . The value of �$#OPOP�� _ � � _ b  ranges from
-1 to 1, where 1 indicates a perfect correlation, 0 indicates
no correlation, and -1 indicates negative correlation. A per-
fect correlation between _%� and _ b indicates that _%� can
be used in place of _ b to guide a fair caching policy.

3. Cache Partitioning

This section discusses the hardware support for partition-
able caches based on existing techniques (Section 3.1). Then
it presents the proposed static algorithms (Section 3.2) and
dynamic algorithms (Section 3.3) for finding the partitions
that optimize fairness.

In Section 3.1, we adapt the modified LRU hardware sup-
port for partitionable caches from Suh, et al. [19]. Although
we use similar hardware support, our partitioning algorithms
(Section 3.2 and 3.3) are different in that while they optimize
throughput, we optimize fairness. In addition, while their dy-
namic partitioning algorithms rely on the cache to implement
true LRU replacement algorithm, our dynamic partitioning
algorithms can work with any replacement algorithms. This
is important because the L2 cache often implements pseudo-
LRU replacement algorithms (such as in [3]), partly due to
the complexity of implementing LRU replacement for highly
associative caches, and partly due to a small performance
difference between LRU and random replacement in large
and highly associative caches [7]. Therefore, to be useful, a
cache partitioning algorithm should work with pseudo-LRU
replacement algorithms.

3.1. Hardware Support for Partitionable Caches

In general, hardware support for partitionable caches can
be categorized into two approaches. The first approach re-
lies on modifying the cache placement algorithm by re-
stricting where data can be placed in the cache [14, 10].



This approach relies on configurable cache hardware or pro-
grammable partition registers. The drawbacks of this ap-
proach are that it modifies the underlying cache hardware,
may increase the cache access time due to having to locate
the correct partition, and makes the cache unavailable during
reconfiguration.

An alternative approach is to modify the cache replace-
ment algorithm [19]. In this approach, partitioning the cache
is incremental: on each cache miss, we can reallocate a cache
line from another thread to the thread that suffers the cache
miss by selecting the line for replacement. Because a re-
placement only occurs on cache misses, this approach does
not add to cache access time. In addition, selecting a line
to be replaced can be overlapped with the cache miss la-
tency. Finally, due to the incremental repartitioning nature,
the repartitioning does not make the cache unavailable. It
involves writing to a counter the target number of lines and
tracking the current number of lines already allocated to a
thread. In this paper, we apply the second approach.

In [19], the cache is augmented with two types of coun-
ters: one that keeps track of the current number of lines al-
located to each processor or thread ^ ( ���9P ����� #�� ` ), and the
target number of lines for the thread ( �	�LP�
 K�� ����� #�� ` ). Ini-
tially, or after each repartitioning, �	�LP�
)K�� �
��� #�� ` may differ
from ����P ����� #�� ` . If ����P �
��� #�� `�� �	�LP�
)K�� ����� #�� ` , ^ has too
many lines allocated to it (over-allocation). If ���9P ����� #�� ` �
�	� P�
)K�� ����� #�� ` , ^ has too few lines allocated to it (under-
allocation). To achieve the target allocation, when a thread ^
suffers a cache miss, we check whether ^ is over- or under-
allocated. If ^ has the right allocation, or is over-allocated,
one of ^ ’s line in the same set as the missed address is se-
lected for replacement. If, however, ^ is under-allocated, we
need to add more lines to it. To achieve that, a line in the
same set that belongs to another thread that is over-allocated
(say, thread � ) is selected for replacement. Then, the cur-
rent allocations are updated: for thread � it is decremented,
and for thread ^ it is incremented. If a line that belongs to
another thread cannot be found, a line that belongs to ^ is
selected for replacement. With this algorithm, each set may
be partitioned differently, although the sum of partitions over
all sets for each thread is the same as the thread’s target al-
location. Programming a new partition is accomplished by
writing to the target allocation register of each thread.

One parameter of the cache is the partition granularity,
the smallest unit of partition that can be reallocated. Ide-
ally, taking into account the number of cores, it should be
as coarse-grain as possible without sacrificing the ability to
enforce fairness. For 2-way CMP, we found that a partition
granularity equal to the total cache space divided by its asso-
ciativity, works well. For example, for an 8-way 512 KB L2
cache, the granularity would be 64 Kbytes.

3.2. Static Fair Caching

Our static fair caching algorithm partitions the cache
based on the stack distance profile of an application, col-
lected through a profiling run. The stack distance profile can
only be collected when the cache uses an LRU replacement
policy, or at least records the LRU stack information. Note
that we only need to perform one profiling run per applica-
tion.

For static partitioning, we first run each application
and collect its global stack distance frequency profile de-
scribed in Section 2.2. Let � 6 ��� � � � 	 � � � � � ��� � ,C � � 6 ����� NjK�� ���LK , denote a partition. Then, for each
thread � and partition � , we apply Equation 1, using��� 6 � 8���! #" B �%$ A � � B " �'& B to obtain the expected new misses
( _ � MHM MON0PH� ) and miss rate ( _ � MOM P MHNjPH� ) under cache shar-
ing. After that, for each possible partition, we choose the
partition that minimizes the chosen metric _ � , and apply
the partition to the cache for the duration of the co-schedule.
The partition needs to be re-evaluated after a context switch
because the thread mix may have changed.

The benefit of static partitioning is that it can be used as
an input to the OS thread scheduler to avoid co-scheduling
threads that will cause cache thrashing. As discussed in 2.1,
cache partitioning alone cannot prevent all cases of cache
thrashing. The drawback is that static partitioning relies on
the cache to implement LRU replacement algorithm and is
unable to adapt to applications’ dynamic behavior.

3.3. Dynamic Fair Caching

The dynamic partitioning algorithm consists of three
parts: initialization, rollback, and repartitioning. Initializa-
tion is performed only once when a co-schedule is formed.
Then, at the end of each time interval � , the rollback step, im-
mediately followed by the repartitioning step, are invoked.
The goal of the rollback step is to reverse a repartitioning de-
cision that has not been beneficial, i.e. when the cache miss
rates of the thread that was given a larger partition in the
prior time interval has not improved. In the first time inter-
val, since no repartitioning has been performed, the rollback
step performs nothing. All threads that are not rolled back
are considered for repartitioning in the repartitioning step.
The goal of this step is to increase or decrease a thread’s par-
tition such that a better fairness can be achieved in the next
time interval. At the end of the steps, both the rollback and
repartitioning decisions are programmed into the cache and
applied to the next time interval � � �

. The time interval pe-
riod needs to be large enough so that partition changes can
take full effect in a single time interval, and that the cost of
invoking the algorithm is relatively small. However, since
the cache never becomes unavailable when the algorithm is
invoked, the algorithm latency is not much of a critical issue.



Initialization.
Initialize partition equally,

� �=6 >��!> � B " �'& B� , where Q is the
number of cores or threads sharing the cache. Apply that
for the first interval period.

In the rollback step, the considered set is initialized to
contain all the co-scheduled threads, indicating that by de-
fault all of them will be considered for repartitioning (Step
1). Then each thread � is checked whether it has received a
larger partition in the time interval that just completed ( � ), in-
dicated by a repartitioning assignment

� � ` being a member
of the repartition assignment set

� � , which was recorded in
the prior time interval by the repartitioning step. For such
a thread, if its new miss rate has not decreased by at leastI���� AaA � �!> � , the prior repartitioning assignment is deemed in-
effective, and therefore it is rolled back to what it was before
that (Step 2). In addition, both threads � and ^ are removed
from the considered set, so that they will no longer be con-
sidered by the repartitioning step.

Rollback Step. At the end of an interval period � :
1. Initialize Considered Set � � 6 � � � � � � � � � Q
	 .
2. For each thread � , if a repartition assignment

� �a`��� � , where
� � is the repartition assignment set, and_ � MOM P MON0P ��
3���� _ � MOM P MHNjP ���� I ��� AaA � �!> � , roll back

the repartitioning assignment:
� � ������ 6 � ��
3��� � �����` 6 � ��
3�`� � � 6 � � � � � � ^�	

In the repartitioning step, the repartition assignment set� � is emptied (Step 1). Then, for each thread in the consid-
ered set, we compute the statistics ( � � ) that corresponds to
the metric being optimized (Step 2). Since an ideal fairness
is achieved when all � � ’s have equal values, the next step
tries to equalize these values by changing the partition sizes.
Two threads in the considered set which have the maximum
and minimum � values are repartitioned, if the difference in
their � values exceeds a repartition threshold ( I � B � � � � � � ��� � )
(Step 3 and 4). The thread with a larger � value obviously is
impacted too much by the partition, and is therefore assigned
a larger partition, where the additional partition ( 
 P��LQ ) is
taken from the thread with a smaller � value. The repartition
assignment is then recorded in the repartition assignment set� � , in case it needs to be rolled back at the end of the next
time interval. Both threads are then removed from the con-
sidered set (Step 5). Steps 2 to 5 are repeated until all threads
in the considered set have been considered for repartitioning
(Step 6). Finally, the new repartition assignments (including
rolled back repartitions) are applied in the next time interval
(Step 7).

Repartitioning Step. At the end of an interval period � ,
and right after the rollback step:

1. Initialize repartition assignment
� � 6 � 	 .

2. For each thread � � � � , compute the statistics re-
lated to the fairness metric being optimized. For ex-
ample, for metric _ � , we compute � �� 6�� ����� � � � 8� ����� � B � 8 ,

whereas for _�� , we compute � �� 6 � ������� � � � 8� ������� � B � 8 .
3. Find �  � � � � � and �  � � � � � such that � ��!#"%$

and � � ! 8'& have the maximum and minimum values,
respectively.

4. If � � !#"($ � � � ! 8)& � I � B � � � � � � ��� �+*-, then reassign
the partition:� � ���=���!#"($ 6 � � � !#"($ � 
 P�� Q
� � ���=�� ! 8)& 6 � � ��! 8'& � 
LP��LQ� � � 6 � �/. � � �)!#"($@��! 8)& 	

5. � � 6 � � � � �  � � � �  � � 	 .
6. Repeat step 2 to 5 until � � 6 � 	 .
7. Apply the partition in the next interval period � � �

.

The parameters for the algorithms are the partition gran-
ularity ( 
LP��LQ ), rollback threshold ( I#��� AaA � �!> � ), repartitioning
threshold ( I0� B � � � � � � ��� � ), and the time interval period.

3.4. Dynamic Algorithm Overhead

There are three types of overheads in our dynamic parti-
tioning schemes: profiling overhead, storage overhead, and
fair caching algorithm overhead. A single static profiling run
per thread is needed to obtain the base miss per cycle (repre-
senting miss count) and miss rate, except when the algorithm
optimizes the _ 	 or _ � metrics, in which case it does not
need any profiling. Once the base miss frequency and miss
rate are obtained, they are used by the dynamic partitioning
algorithms as constants. In terms of storage overhead, we
need a few registers per thread to keep track of the miss count
or miss rate of the current and prior time intervals. Finally,
we assume that the fair caching algorithm is implemented in
hardware, and therefore does not incur any algorithm over-
head. However, we have also measured the overhead of a
software implementation of the algorithm for a 2-processor
CMP and found that the algorithm takes less than 100 cy-
cles to run per invocation, making a software implementa-
tion a feasible alternative. Furthermore, since the algorithm
invocation does not make the cache unavailable and can be
overlapped with the application execution, its latency can be
hidden. Even when compared to the smallest time interval,
the overhead is less than 0.01%.

4. Evaluation Setup

Applications. To evaluate the benefit of the cache partition-
ing schemes, we choose a set of mostly memory-intensive
benchmarks: apsi, art, applu, bzip2, equake, gzip, mcf,



perlbmk, swim, twolf, and vpr from the SPEC2K benchmark
suite [18]; mst from Olden benchmark, and tree [1]. We used
test input sets for the Spec benchmarks, 1024 nodes for mst,
and 2048 bodies for tree. Most benchmarks are simulated
from start to completion, with an average of 786 millions
instructions simulated.

Miss/Reuse Concentrated Flat

High/High mcf(22%),
applu(66%)

High/Low art(99.8%),
swim(77%),
equake(85%)

Low/High vpr(0.05%),
apsi(29%)

tree(7%),
gzip(5%),
bzip2(18%)

Low/Low perlbmk(60%),
twolf(3%)

mst(67%)

Table 1: The applications used in our evaluation.

Table 1 categorizes the benchmarks based on their miss
frequency, reuse frequency, and the shape of their stack dis-
tance (Concentrated vs. Flat). The L2 miss rates of the ap-
plications are shown in parenthesis. A benchmark is catego-
rized into the high miss frequency (or high reuse frequency)
categories if the number of misses (or accesses) per 1000
CPU cycles are more than 2. It is categorized into the “Flat”
category if the standard deviation of its global stack distance
frequency counters is smaller than 0.1. Otherwise, it is cat-
egorized into “Concentrated”. Finally, all data is collected
for the benchmark’s entire execution time, which may differ
from when they are co-scheduled. The table shows that we
have a wide range of benchmark behavior. These bench-
marks are paired and co-scheduled. Eighteen benchmark
pairs are co-scheduled to run on separate CMP cores that
share the L2 cache. To observe the impact of L2 cache shar-
ing, each benchmark pair is run from the start and is termi-
nated once one of the benchmarks completes execution.

Simulation Environment. The evaluation is performed us-
ing a cycle-accurate, execution-driven multiprocessor simu-
lator. The CMP cores are out-of-order superscalar proces-
sors with private L1 instruction and data caches, and shared
L2 cache and all lower levels of memory hierarchy. Table 2
shows the parameters used for each component of the archi-
tecture. The L2 cache replacement algorithm is either LRU
or pseudo-LRU. For the pseudo-LRU replacement, we use a
random number to select a non-MRU line for replacement.

Algorithm Parameters. The parameters for the fair caching
algorithm discussed in Section 3.3 are shown in Table 3.
The time interval determines how many L2 cache accesses
must occur before the algorithm is invoked. We also vary the
rollback threshold ( I0��� A A � �!> � ), while the repartition threshold
( I � B � � � � � � ��� � ) is set to 0. Although the partition granularity

CMP
2 cores, each 4-issue out-of-order, 3.2 GHz
Int, fp, ld/st FUs: 2, 2, 2
Max ld, st: 64, 48. Branch penalty: 17 cycles
Re-order buffer size: 192

MEMORY
L1 Inst (private): WB, 32 KB, 4 way, 64-B line, RT: 3 cycles
L1 data (private): WB, 32 KB, 4 way, 64-B line, RT: 3 cycles
L2 data (shared): WB, 512 KB, 8 way, 64-B line, RT: 14 cycles
L2 replacement: LRU or pseudo-LRU
RT memory latency: 407 cycles
Memory bus: split-transaction, 8 B, 800 MHz, 6.4 GB/sec peak

Table 2: Parameters of the simulated architecture. Laten-
cies correspond to contention-free conditions. RT stands for
round-trip from the processor.

can be any multiples of a cache line size, we choose 64KB
granularity to balance the speed of the algorithm in achiev-
ing the optimal partition, and the ability of the algorithm to
approximate an ideal fairness.

Parameter Values
�XU���� 64 KB
Time interval 10K, 20K, 40K, 80K L2 accesses
R
���
	�	���
���� 0%, 5%, 10%, 15%, 20%, 25%, 30%

R
������
���� , � , � ] 0

Table 3: Dynamic partitioning algorithm parameters.

Dedicated Cache Profiling. Benchmark pairs are run in a
co-schedule until a thread that is shorter completes. At that
point, the simulation is stopped to make sure that the statis-
tics collected reflect the impact of L2 cache sharing. To ob-
tain accurate dedicated mode profiles, the profile duration
should correspond to the duration of the co-schedules. For
the shorter thread, the profile is collected for its entire exe-
cution in a dedicated cache mode. But for the longer thread,
the profile is collected until the number of instructions ex-
ecuted reaches the number of instructions executed in the
co-schedule.

5. Evaluation

In this section, we present and discuss several sets of eval-
uation results. Section 5.1 presents the correlation of the
various fairness metrics. Section 5.2 discusses the results for
the static partitioning algorithm, while Section 5.3 discusses
the results for the dynamic partitioning algorithm. Finally,
Section 5.4 discusses how sensitive the dynamic partitioning
algorithm is to its parameters.

5.1. Metric Correlation

Figure 3 presents the correlation of L2 cache fairness met-
rics ( _ �O� _ 	 � � � � � _ 	 ) with the execution time fairness met-
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Figure 3: Correlation of five L2 cache fairness metrics (
c 2 � c Y � Z ZTZ � c � ) with the execution time fairness metric (

c e ).

ric from Equation 3 ( _ b ). We collect one data point of
fairness metric values for each possible partition. Since the
partitioning granularity is 64KB (Section 4), there are seven
possible partitions. Once the seven data points are collected,
the correlation is computed by applying Equation 9.

The figure shows that on average, _ � , _ � , _ � and _ 	
produce good correlation (94%, 92%, 91%, and 92%, re-
spectively), whereas _%	 produces poor correlation (37%).
It is clear that _ � is the best fairness metric, not only on av-
erage, but also across all the benchmark pairs. The second
best metric is _�� where it consistently has a high correlation
on all benchmark pairs. Therefore, for the rest of the evalua-
tion, we only consider _ � and _ � for our fairness metrics.

_ � and _ 	 occasionally do not correlate as well as _ � ,
such as for benchmark pairs apsi+equake and tree+mcf.
Zero correlation appears in apsi+art for most metrics, show-
ing an anomaly caused by constant values of the metrics re-
gardless of the partition sizes, versus the _ b metric which
produces a very slight change due to external factors such as
bus contention. In five benchmark pairs, _ 	 produces nega-
tive correlation, indicating that it is not a good metric to use
for measuring fairness. This is because equalizing the num-
ber of misses over-penalizes threads that originally have few
misses. Therefore, enforcing _ 	 can aggravate unfair cache
sharing.

Note that most of the benchmarks tested are L2 cache in-
tensive, in that they access the L2 cache quite frequently. It
is possible that benchmarks that do not access the L2 cache
much may not obtain a high correlation between the L2 fair-
ness metrics and the execution time fairness. However, ar-
guably, such benchmarks do not need high correlation val-
ues because they do not need fair caching. Even when their
number of L2 cache misses increases significantly, their ex-
ecution time will not be affected much.

5.2. Static Fair Caching Results

Figure 4 shows the throughput (combined IPC) on the top
chart and _ � fairness metric value on the bottom chart, for
all benchmark pairs and their average, using our static par-
titioning algorithm. Each benchmark pair shows the results
for four schemes. The first bar (LRU) is a non-partitioned
shared L2 cache with LRU replacement policy. The second
bar (MinMiss) is a L2 cache partitioning scheme that min-
imizes the total number of misses of the benchmark pair.
MinMiss is similar to the scheme in [19], except that Min-
Miss finds such partition statically. The third bar (FairM1)
is our L2 cache partitioning algorithm that enforces fair
caching by minimizing the _ � metric for each benchmark
pair. The last bar (Opt) represents the best possible (most
fair) partition. Opt is obtained by running the benchmark
pairs once for every possible partition. The partition that
produces the best fairness is chosen for Opt. All bars are
normalized to LRU, except for apsi+art, in which case all
schemes, including LRU, achieve an ideal fairness. For static
partitioning, to obtain precise target partitions, the same par-
tition sizes are kept uniform across all the sets.

On average, all schemes, including MinMiss, improve the
fairness and throughput compared to LRU. This indicates
that LRU produces a very unfair L2 cache sharing, result-
ing in poor throughput because in many cases one of the co-
scheduled threads is significantly slowed down compared to
when it runs alone. MinMiss increases the combined IPC by
13%. However, it fails to improve the fairness much com-
pared to LRU, indicating that maximizing throughput does
not necessarily improve fairness.

FairM1 achieves much better fairness compared to both
LRU and MinMiss, reducing the _ � metric by 47% and 43%
compared to LRU and MinMiss, respectively. Interestingly,
FairM1 achieves a significant increase in throughput (14%)
compared to LRU, which is even slightly better compared to
that of MinMiss. This result points that, in most cases, opti-
mizing fairness also increases throughput. This is because
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Figure 4: Throughput (top chart) and fairness metric
c 2 (bottom chart) of static partitioning algorithms. Lower

c 2 values
indicate better fairness.

by equalizing the impact of cache sharing on all threads,
it avoids the pathological throughput where one thread is
starved and its IPC is significantly penalized. The excep-
tional cases are apsi+art, apsi+equake, and tree+mcf, where
even Opt yields a lower throughput compared to LRU. Out of
these three cases, the throughput reduction in apsi+equake
and tree+mcf are due to the limitation of a static partition to
adapt to the changing dynamic behavior of the benchmark
pairs. They are much improved by the dynamic fair caching
algorithms.

5.3. Dynamic Fair Caching Results

Figure 5 shows the throughput (top chart) and fairness
results (bottom chart) of our dynamic partitioning algo-
rithm for the benchmark pairs and their average. Similar
to Figure 4, throughput and fairness are represented as the
combined Instructions Per Cycle (IPC) and metric _ � , re-
spectively. Each benchmark pair shows the result for four
schemes. The first bar (LRU) is a non-partitioned shared L2
cache with LRU replacement policy. The second bar (PLRU)
is a non-partitioned shared L2 cache with pseudo-LRU re-
placement policy described in Section 4. The last three bars
(FairM1Dyn, FairM3Dyn, and FairM4Dyn) are our L2 algo-
rithms from Section 3.3 which minimize _ � , _ � , and _��
metrics, respectively. All the bars are normalized to PLRU,
which is selected as the base case because it is a more re-
alistic L2 cache implementation, and that unlike the static
algorithm, our dynamic algorithms can work with it. LRU is
the same as in Figure 4 but looks different in the chart be-
cause it is normalized to PLRU. The results in the figure are

obtained using 10K L2 accesses for the time interval period,
and 20% for the rollback threshold.

The figure shows that PLRU and LRU achieve roughly
comparable throughput and fairness. FairM1Dyn and
FairM3Dyn improve fairness over PLRU significantly, re-
ducing the _ � metric by a factor of 4 on average (or 75% and
76%, respectively) compared to PLRU. This improvement is
consistent over all benchmark pairs, except for FairM3Dyn
on tree+mcf. In tree+mcf, PLRU already achieves almost
ideal fairness, and therefore it is difficult to improve much
over this.

The figure also confirms an earlier observation where
fairness strongly impacts throughput. By achieving better
fairness, both algorithms achieve a significant increase in
throughput (15%). The throughput improvement is con-
sistent for almost all benchmark pairs. Nine out of eigh-
teen cases show throughput improvement of more than
10%. In gzip+art, the throughput increases by almost two
times (87%). The only noticeable throughput decrease is
in apsi+art and tree+mcf, where FairM1Dyn reduces the
throughput by 11% and 4%, respectively. In those cases,
the fairness is improved ( _ � is reduced by 89% and 33%,
respectively). This implies that, in some occasions, optimiz-
ing fairness may reduce throughput.

Since the height of the LRU bar in the figure is almost the
same as in Figure 4 (0.94 vs. 1.07), we can approximately
compare how the dynamic partitioning algorithms perform
with respect to the static partitioning algorithms. Compar-
ing the two figures, it is clear that the dynamic partitioning
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Figure 5: Throughput (top chart) and fairness metric
c 2 (bottom chart) of dynamic partitioning algorithms. Lower

c 2
values indicate better fairness.

algorithms (FairM1Dyn and FairM3Dyn) achieve better fair-
ness compared to FairM1 (0.25 and 0.24 vs. 0.5) and even
achieve a slightly better average throughput. This is nice
because compared to FairM1, the dynamic partitioning al-
gorithms do not require stack distance profiling or rely on an
LRU replacement algorithm.
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Figure 6: The distribution of partitions for FairM1Dyn.

Finally, FairM4Dyn gives moderate throughput and fair-
ness improvement. It improves throughput by 8% and re-
duce _ � metric value by 26%. Although it is worse than
FairM1Dyn and FairM3Dyn, it may be attractive due to
not requiring any profiling information. Also note that
FairM4Dyn’s pathological cases seem to be isolated to only
a few benchmark pairs in which one of the threads is apsi,
which suffers from a very high L2 miss rate. Therefore,
FairM4Dyn is a promising algorithm that needs to be inves-
tigated more thoroughly.

Figure 6 shows the fraction of all time intervals where
each different partition is applied, for each benchmark pair
using the FairM1Dyn algorithm. An ’x-y’ partition means

that the first thread is assigned
� � � � , ,��

of the cache, while
the second thread is assigned ? � � � , ,��

of the cache. To col-
lect the data for the figure, at the end of every time interval,
we increment the partition count reflecting the partition size
that was applied in the time interval just completed.

The figure shows that the resulting partitions are of-
ten non-symmetric, with larger partition for one thread and
smaller for another. In one benchmark pair (gzip+applu),
the partitions seem to be quite symmetric, where the bright-
est section representing 4-4 partition is in the middle of the
bar. The figure shows that in most cases, there are only two
partitions that are used much more often than all other par-
titions. This indicates that FairM1Dyn quickly converges to
two partitions, and oscillates between the two partitions as a
result of repartitioning and rolling back from it at alternat-
ing time intervals. This highlights the role of the rollback
step that allows the partitioning algorithm oscillate around
the optimal partition.

5.4. Parameter Sensitivity

Impact of Rollback Threshold. In the previous section,
Figure 6 highlights the importance of the rollback mecha-
nism in the dynamic partitioning algorithms in rolling back
from bad repartitioning decision. The rollback threshold is
used by the dynamic algorithms to undo the prior reparti-
tion assignment if it fails to reduce the miss rate of a thread
that was given a larger partition. A higher rollback threshold
makes the algorithm more conservative, in that it is harder
to assign a new partition (without rolling it back) unless the
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Figure 7: The impact of rollback threshold (

R
���
	�	���
���� ) on throughput (top chart) and fairness metric

c 2 (bottom chart).
Lower

c 2 values indicate better fairness.

miss rate improvement is more substantial.

Figure 7 shows the throughput and fairness produced by
different rollback threshold values ranging from 0% to 30%.
All the bars are normalized to the PLRU case. The figure
shows that the rollback threshold affects the throughput and
fairness in some benchmark pairs in a very benchmark pair-
specific manner. However, although the _ � metric value
changes with the threshold, the throughput improvement
over PLRU does not vary much. Finally, on average, 20%
rollback threshold achieves the best fairness.

Impact of Time Interval. Due to space constraint, we
cannot show the detailed results of how different time in-
tervals affect throughput and fairness. To summarize, we
found that 10K L2 cache accesses to be slightly better than
other time intervals. Larger time intervals affect the ability of
the algorithms to converge quickly to the optimal partition,
while smaller time intervals do not allow sufficient time to
collect reliable miss count and miss rate statistics.

6. Related Work

Prior work in CMP architectures has ignored fairness is-
sue and focused on throughput and its optimization tech-
niques on a shared L2 cache [19, 10].

In Simultaneous Multi-Threaded (SMT) architectures,
where typically the entire cache hierarchy and many proces-
sor resources are shared, metrics that mix throughput and
fairness have been studied. The need to consider both as-
pects is intuitive given the high number of resources that
are shared by SMT threads. Even in SMT architectures,

however, the studies have only focused on either improv-
ing throughput, or improving throughput without sacrificing
fairness too much [8, 17, 15, 12]. Fairness has not been
studied as the main or separate optimization goal. For ex-
ample, a weighted speedup, which incorporates fairness to
some extent, has been proposed by Snavely, et al. [15]. Luo,
et al. proposed harmonic mean of each thread’s individual
speedups to encapsulate both throughput and fairness [12].
Typically, to obtain the optimization goal, fetch policies,
such as ICOUNT [6], can be used to control the number of
instructions fetched from different SMT threads.

Our study differs in all the previous work in that we pur-
sue fairness as the main and separate optimization goal on
a CMP architecture. We also show that in most cases, opti-
mizing fairness is sufficient because throughput is also im-
proved. However, optimizing throughput does not always
result in an optimal fairness due to the tendency to favor
threads whose IPCs can be easily improved. An important
benefit of our fair caching scheme is that it greatly simpli-
fies OS design because to a large extent, it can abstract away
the impact of cache sharing, and treat a CMP system the
same way as a single time-shared processor. Without hard-
ware that enforces fairness, the hardware and the OS have
to be designed with extra complexity to detect pathological
performance cases such as thread starvation and priority in-
version, and implement a policy that correct the problems.

To deal with processor resource contention, an approach
taken by Snavely, et al. [16], and Dorai and Yeung [4] is to
expose the OS thread priority information to the SMT hard-
ware. Dorai and Yeung [4] categorize SMT threads into fore-



ground and background threads. Resources in SMT architec-
ture are allocated in such a way to preserve the performance
of the foreground thread, at the expense of fairness of the
background (transparent) threads. Since transparent threads
are not intrusive performance-wise, they can be used to run
background tasks, such as software prefetching and perfor-
mance monitoring. While transparent threads could be use-
ful for some background tasks, in the general case, the OS
already has a timeslice mechanism to make sure that back-
ground tasks are not intrusive to other tasks. Rather than
exposing the OS structures to the hardware, our fair caching
approach hides the complexity of the hardware from the OS,
allowing simpler OS design.

7. Conclusions

This paper has shown that a thread-blind LRU replace-
ment algorithm often produces unfair cache sharing, where
in a co-schedule, some threads are slowed down much more
than others, creating suboptimal throughput, as well as caus-
ing pathological performance problems that the OS has to
tackle, such as thread starvation, priority inversion, and
cache thrashing. To avoid that, we proposed the concept of
fair caching, where the hardware guarantees that the impact
of cache sharing is uniform for all the co-scheduled threads.
With fair caching, the OS can mostly abstract away the im-
pact of cache sharing, and expect priority-based timeslice
assignment to work as effectively as in a time-shared single
processor system.

This paper also proposed and evaluated five cache fair-
ness metrics that measure the degree of fairness in cache
sharing, and can be used to guide static and dynamic L2
cache partitioning algorithms in optimizing fairness. The dy-
namic partitioning algorithm is easy to implement, requires
little or no profiling, has low overhead, and does not re-
strict the cache replacement algorithm to LRU. The static
algorithm, although requiring the cache to maintain LRU
stack information, can help the OS thread scheduler to avoid
cache thrashing. Finally, this paper has studied the relation-
ship between fairness and throughput in detail. We found
that optimizing fairness usually increases throughput, while
maximizing throughput does not necessarily improve fair-
ness. This is because throughput may improve at the expense
of fairness, for example by favoring some threads whose
throughput is easy to improve, over others. Using a set of co-
scheduled pairs of benchmarks, on average our algorithms
improve fairness by a factor of 4 � , while increasing the
throughput by 15%, compared to a non-partitioned shared
cache. The throughput improvement is slightly better than a
scheme that minimizes the total number of cache misses as
its main objective.
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